Skip to main content

Taking the Spark out of PySpark by converting to SQL

Project description

SQLFrame Logo

SQLFrame implements the PySpark DataFrame API in order to enable running transformation pipelines directly on database engines - no Spark clusters or dependencies required.

SQLFrame currently supports the following engines (many more in development):

SQLFrame also has a "Standalone" session that be used to generate SQL without any connection to a database engine.

SQLFrame is great for:

  • Users who want to run PySpark DataFrame code without having to use a Spark cluster
  • Users who want a SQL representation of their DataFrame code for debugging or sharing with others
  • Users who want a DataFrame API that leverages the full power of their engine to do the processing

Installation

# BigQuery
pip install "sqlframe[bigquery]"
# DuckDB
pip install "sqlframe[duckdb]"
# Postgres
pip install "sqlframe[postgres]"
# Snowflake
pip install "sqlframe[snowflake]"
# Standalone
pip install sqlframe

See specific engine documentation for additional setup instructions.

Configuration

SQLFrame generates consistently accurate yet complex SQL for engine execution. However, when using df.sql(), it produces more human-readable SQL. For details on how to configure this output and leverage OpenAI to enhance the SQL, see Generated SQL Configuration.

Example Usage

from sqlframe.bigquery import BigQuerySession
from sqlframe.bigquery import functions as F
from sqlframe.bigquery import Window

session = BigQuerySession()
table_path = "bigquery-public-data.samples.natality"
# Top 5 years with the greatest year-over-year % change in new families with single child
df = (
    session.table(table_path)
    .where(F.col("ever_born") == 1)
    .groupBy("year")
    .agg(F.count("*").alias("num_single_child_families"))
    .withColumn(
        "last_year_num_single_child_families", 
        F.lag(F.col("num_single_child_families"), 1).over(Window.orderBy("year"))
    )
    .withColumn(
        "percent_change", 
        (F.col("num_single_child_families") - F.col("last_year_num_single_child_families")) 
        / F.col("last_year_num_single_child_families")
    )
    .orderBy(F.abs(F.col("percent_change")).desc())
    .select(
        F.col("year").alias("year"),
        F.format_number("num_single_child_families", 0).alias("new families single child"),
        F.format_number(F.col("percent_change") * 100, 2).alias("percent change"),
    )
    .limit(5)
)
>>> df.sql()
WITH `t94228` AS (
  SELECT
    `natality`.`year` AS `year`,
    COUNT(*) AS `num_single_child_families`
  FROM `bigquery-public-data`.`samples`.`natality` AS `natality`
  WHERE
    `natality`.`ever_born` = 1
  GROUP BY
    `natality`.`year`
), `t39093` AS (
  SELECT
    `t94228`.`year` AS `year`,
    `t94228`.`num_single_child_families` AS `num_single_child_families`,
    LAG(`t94228`.`num_single_child_families`, 1) OVER (ORDER BY `t94228`.`year`) AS `last_year_num_single_child_families`
  FROM `t94228` AS `t94228`
)
SELECT
  `t39093`.`year` AS `year`,
  FORMAT('%\'.0f', ROUND(CAST(`t39093`.`num_single_child_families` AS FLOAT64), 0)) AS `new families single child`,
  FORMAT('%\'.2f', ROUND(CAST((((`t39093`.`num_single_child_families` - `t39093`.`last_year_num_single_child_families`) / `t39093`.`last_year_num_single_child_families`) * 100) AS FLOAT64), 2)) AS `percent change`
FROM `t39093` AS `t39093`
ORDER BY
  ABS(`percent_change`) DESC
LIMIT 5
>>> df.show()
+------+---------------------------+----------------+
| year | new families single child | percent change |
+------+---------------------------+----------------+
| 1989 |         1,650,246         |     25.02      |
| 1974 |          783,448          |     14.49      |
| 1977 |         1,057,379         |     11.38      |
| 1985 |         1,308,476         |     11.15      |
| 1975 |          868,985          |     10.92      |
+------+---------------------------+----------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlframe-1.5.2.tar.gz (17.1 MB view details)

Uploaded Source

Built Distribution

sqlframe-1.5.2-py3-none-any.whl (118.9 kB view details)

Uploaded Python 3

File details

Details for the file sqlframe-1.5.2.tar.gz.

File metadata

  • Download URL: sqlframe-1.5.2.tar.gz
  • Upload date:
  • Size: 17.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for sqlframe-1.5.2.tar.gz
Algorithm Hash digest
SHA256 c0f630287b829963994f62183ae5784044dfb2182ea96787a925b40bb8b533c2
MD5 f427df7a3a97f90a3062d2f5be9e39e2
BLAKE2b-256 94ff9fbc99ee5b21900bb2f499b53839d76469ceeec58aaf0c85612d369f8e9a

See more details on using hashes here.

File details

Details for the file sqlframe-1.5.2-py3-none-any.whl.

File metadata

  • Download URL: sqlframe-1.5.2-py3-none-any.whl
  • Upload date:
  • Size: 118.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for sqlframe-1.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a40d0bcf74583d75a8f088bc571ee8747f24d6249bf1ac36e419ed63af66591f
MD5 057f838bee549eec1d860beb3b7a1081
BLAKE2b-256 09f2942fd8c491469ba05456105e72073fbc3c806490b024925a444a284575bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page