Skip to main content

Taking the Spark out of PySpark by converting to SQL

Project description

SQLFrame Logo

SQLFrame implements the PySpark DataFrame API in order to enable running transformation pipelines directly on database engines - no Spark clusters or dependencies required.

SQLFrame currently supports the following engines (many more in development):

SQLFrame also has a "Standalone" session that be used to generate SQL without any connection to a database engine.

SQLFrame is great for:

  • Users who want to run PySpark DataFrame code without having to use a Spark cluster
  • Users who want a SQL representation of their DataFrame code for debugging or sharing with others
  • Users who want a DataFrame API that leverages the full power of their engine to do the processing

Installation

# BigQuery
pip install "sqlframe[bigquery]"
# DuckDB
pip install "sqlframe[duckdb]"
# Postgres
pip install "sqlframe[postgres]"
# Snowflake
pip install "sqlframe[snowflake]"
# Standalone
pip install sqlframe

See specific engine documentation for additional setup instructions.

Configuration

SQLFrame generates consistently accurate yet complex SQL for engine execution. However, when using df.sql(), it produces more human-readable SQL. For details on how to configure this output and leverage OpenAI to enhance the SQL, see Generated SQL Configuration.

Example Usage

from sqlframe.bigquery import BigQuerySession
from sqlframe.bigquery import functions as F
from sqlframe.bigquery import Window

session = BigQuerySession()
table_path = "bigquery-public-data.samples.natality"
# Top 5 years with the greatest year-over-year % change in new families with single child
df = (
    session.table(table_path)
    .where(F.col("ever_born") == 1)
    .groupBy("year")
    .agg(F.count("*").alias("num_single_child_families"))
    .withColumn(
        "last_year_num_single_child_families", 
        F.lag(F.col("num_single_child_families"), 1).over(Window.orderBy("year"))
    )
    .withColumn(
        "percent_change", 
        (F.col("num_single_child_families") - F.col("last_year_num_single_child_families")) 
        / F.col("last_year_num_single_child_families")
    )
    .orderBy(F.abs(F.col("percent_change")).desc())
    .select(
        F.col("year").alias("year"),
        F.format_number("num_single_child_families", 0).alias("new families single child"),
        F.format_number(F.col("percent_change") * 100, 2).alias("percent change"),
    )
    .limit(5)
)
>>> df.sql()
WITH `t94228` AS (
  SELECT
    `natality`.`year` AS `year`,
    COUNT(*) AS `num_single_child_families`
  FROM `bigquery-public-data`.`samples`.`natality` AS `natality`
  WHERE
    `natality`.`ever_born` = 1
  GROUP BY
    `natality`.`year`
), `t39093` AS (
  SELECT
    `t94228`.`year` AS `year`,
    `t94228`.`num_single_child_families` AS `num_single_child_families`,
    LAG(`t94228`.`num_single_child_families`, 1) OVER (ORDER BY `t94228`.`year`) AS `last_year_num_single_child_families`
  FROM `t94228` AS `t94228`
)
SELECT
  `t39093`.`year` AS `year`,
  FORMAT('%\'.0f', ROUND(CAST(`t39093`.`num_single_child_families` AS FLOAT64), 0)) AS `new families single child`,
  FORMAT('%\'.2f', ROUND(CAST((((`t39093`.`num_single_child_families` - `t39093`.`last_year_num_single_child_families`) / `t39093`.`last_year_num_single_child_families`) * 100) AS FLOAT64), 2)) AS `percent change`
FROM `t39093` AS `t39093`
ORDER BY
  ABS(`percent_change`) DESC
LIMIT 5
>>> df.show()
+------+---------------------------+----------------+
| year | new families single child | percent change |
+------+---------------------------+----------------+
| 1989 |         1,650,246         |     25.02      |
| 1974 |          783,448          |     14.49      |
| 1977 |         1,057,379         |     11.38      |
| 1985 |         1,308,476         |     11.15      |
| 1975 |          868,985          |     10.92      |
+------+---------------------------+----------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlframe-1.5.5.tar.gz (17.1 MB view details)

Uploaded Source

Built Distribution

sqlframe-1.5.5-py3-none-any.whl (126.4 kB view details)

Uploaded Python 3

File details

Details for the file sqlframe-1.5.5.tar.gz.

File metadata

  • Download URL: sqlframe-1.5.5.tar.gz
  • Upload date:
  • Size: 17.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for sqlframe-1.5.5.tar.gz
Algorithm Hash digest
SHA256 9f0e5a7f84635c07038d489405f202cf8770c8132fa1737af9fbf16df240b6a0
MD5 6d6fd83a6423ea0ee0d49073e5acede5
BLAKE2b-256 55bda0fda620630e89170fa57f4ad48f09917b0ae70c873917b12ce8c5586e27

See more details on using hashes here.

File details

Details for the file sqlframe-1.5.5-py3-none-any.whl.

File metadata

  • Download URL: sqlframe-1.5.5-py3-none-any.whl
  • Upload date:
  • Size: 126.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for sqlframe-1.5.5-py3-none-any.whl
Algorithm Hash digest
SHA256 e029c7bf2662e45e302a87a6a24f3db41710de9eea8b54d53c07db7cbfd40a5c
MD5 2c0e8ecde48d73130b39c3863c896651
BLAKE2b-256 14e531ef8b14934c6404c293b50570fd8c9a33a4bc1f3d6f266a08707689752d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page