Skip to main content

Turning PySpark Into a Universal DataFrame API

Project description

SQLFrame Logo

SQLFrame implements the PySpark DataFrame API in order to enable running transformation pipelines directly on database engines - no Spark clusters or dependencies required.

SQLFrame currently supports the following engines (many more in development):

SQLFrame also has a "Standalone" session that be used to generate SQL without any connection to a database engine.

SQLFrame is great for:

  • Users who want to run PySpark DataFrame code without having to use a Spark cluster
  • Users who want a SQL representation of their DataFrame code for debugging or sharing with others
  • Users who want a DataFrame API that leverages the full power of their engine to do the processing

Installation

# BigQuery
pip install "sqlframe[bigquery]"
# DuckDB
pip install "sqlframe[duckdb]"
# Postgres
pip install "sqlframe[postgres]"
# Snowflake
pip install "sqlframe[snowflake]"
# Spark
pip install "sqlframe[spark]"
# Standalone
pip install sqlframe

See specific engine documentation for additional setup instructions.

Configuration

SQLFrame generates consistently accurate yet complex SQL for engine execution. However, when using df.sql(), it produces more human-readable SQL. For details on how to configure this output and leverage OpenAI to enhance the SQL, see Generated SQL Configuration.

SQLFrame by default uses the Spark dialect for input and output. This can be changed to make SQLFrame feel more like a native DataFrame API for the engine you are using. See Input and Output Dialect Configuration.

Example Usage

from sqlframe.bigquery import BigQuerySession
from sqlframe.bigquery import functions as F
from sqlframe.bigquery import Window

session = BigQuerySession()
table_path = "bigquery-public-data.samples.natality"
# Top 5 years with the greatest year-over-year % change in new families with single child
df = (
    session.table(table_path)
    .where(F.col("ever_born") == 1)
    .groupBy("year")
    .agg(F.count("*").alias("num_single_child_families"))
    .withColumn(
        "last_year_num_single_child_families", 
        F.lag(F.col("num_single_child_families"), 1).over(Window.orderBy("year"))
    )
    .withColumn(
        "percent_change", 
        (F.col("num_single_child_families") - F.col("last_year_num_single_child_families")) 
        / F.col("last_year_num_single_child_families")
    )
    .orderBy(F.abs(F.col("percent_change")).desc())
    .select(
        F.col("year").alias("year"),
        F.format_number("num_single_child_families", 0).alias("new families single child"),
        F.format_number(F.col("percent_change") * 100, 2).alias("percent change"),
    )
    .limit(5)
)
>>> df.sql(optimize=True)
WITH `t94228` AS (
  SELECT
    `natality`.`year` AS `year`,
    COUNT(*) AS `num_single_child_families`
  FROM `bigquery-public-data`.`samples`.`natality` AS `natality`
  WHERE
    `natality`.`ever_born` = 1
  GROUP BY
    `natality`.`year`
), `t39093` AS (
  SELECT
    `t94228`.`year` AS `year`,
    `t94228`.`num_single_child_families` AS `num_single_child_families`,
    LAG(`t94228`.`num_single_child_families`, 1) OVER (ORDER BY `t94228`.`year`) AS `last_year_num_single_child_families`
  FROM `t94228` AS `t94228`
)
SELECT
  `t39093`.`year` AS `year`,
  FORMAT('%\'.0f', ROUND(CAST(`t39093`.`num_single_child_families` AS FLOAT64), 0)) AS `new families single child`,
  FORMAT('%\'.2f', ROUND(CAST((((`t39093`.`num_single_child_families` - `t39093`.`last_year_num_single_child_families`) / `t39093`.`last_year_num_single_child_families`) * 100) AS FLOAT64), 2)) AS `percent change`
FROM `t39093` AS `t39093`
ORDER BY
  ABS(`percent_change`) DESC
LIMIT 5
>>> df.show()
+------+---------------------------+----------------+
| year | new families single child | percent change |
+------+---------------------------+----------------+
| 1989 |         1,650,246         |     25.02      |
| 1974 |          783,448          |     14.49      |
| 1977 |         1,057,379         |     11.38      |
| 1985 |         1,308,476         |     11.15      |
| 1975 |          868,985          |     10.92      |
+------+---------------------------+----------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlframe-2.0.0.tar.gz (29.0 MB view details)

Uploaded Source

Built Distribution

sqlframe-2.0.0-py3-none-any.whl (164.9 kB view details)

Uploaded Python 3

File details

Details for the file sqlframe-2.0.0.tar.gz.

File metadata

  • Download URL: sqlframe-2.0.0.tar.gz
  • Upload date:
  • Size: 29.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sqlframe-2.0.0.tar.gz
Algorithm Hash digest
SHA256 54aebecb23207cde112f2e30cbd65255b5b266e013c3adf5fc414223c832d7bc
MD5 d30e67f54a645072b87ba68c866ac79a
BLAKE2b-256 8de2ff6a6dc0af4f804317c83c6df59320c80730c1cde0affbe932a58b5a3641

See more details on using hashes here.

File details

Details for the file sqlframe-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: sqlframe-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 164.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sqlframe-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5ace73fc4106247168a2e31ba5b501156e7be0b05059f968ba2b10efd9e14f57
MD5 16690e2bb63759fa2a0cda0b7d4823f8
BLAKE2b-256 8e9a85eca20144fcf4464dacc14bce149212f11c68a493d40cfa5e08a62ba6f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page