Skip to main content

Turning PySpark Into a Universal DataFrame API

Project description

SQLFrame Logo

SQLFrame implements the PySpark DataFrame API in order to enable running transformation pipelines directly on database engines - no Spark clusters or dependencies required.

SQLFrame currently supports the following engines (many more in development):

SQLFrame also has a "Standalone" session that be used to generate SQL without any connection to a database engine.

SQLFrame is great for:

  • Users who want a DataFrame API that leverages the full power of their engine to do the processing
  • Users who want to run PySpark code quickly locally without the overhead of starting a Spark session
  • Users who want a SQL representation of their DataFrame code for debugging or sharing with others
  • Users who want to run PySpark DataFrame code without the complexity of using Spark for processing

Installation

# BigQuery
pip install "sqlframe[bigquery]"
# DuckDB
pip install "sqlframe[duckdb]"
# Postgres
pip install "sqlframe[postgres]"
# Snowflake
pip install "sqlframe[snowflake]"
# Spark
pip install "sqlframe[spark]"
# Standalone
pip install sqlframe

See specific engine documentation for additional setup instructions.

Configuration

SQLFrame generates consistently accurate yet complex SQL for engine execution. However, when using df.sql(optimize=True), it produces more human-readable SQL. For details on how to configure this output and leverage OpenAI to enhance the SQL, see Generated SQL Configuration.

SQLFrame by default uses the Spark dialect for input and output. This can be changed to make SQLFrame feel more like a native DataFrame API for the engine you are using. See Input and Output Dialect Configuration.

Activating SQLFrame

SQLFrame can either replace pyspark imports or be used alongside them. To replace pyspark imports, use the activate function to set the engine to use.

from sqlframe import activate

# Activate SQLFrame to run directly on DuckDB
activate(engine="duckdb")

from pyspark.sql import SparkSession
session = SparkSession.builder.getOrCreate()

SQLFrame can also be directly imported which both maintains pyspark imports but also allows for a more engine-native DataFrame API:

from sqlframe.duckdb import DuckDBSession

session = DuckDBSession.builder.getOrCreate()

Example Usage

from sqlframe import activate

# Activate SQLFrame to run directly on BigQuery
activate(engine="bigquery")

from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql import Window

session = SparkSession.builder.getOrCreate()
table_path = '"bigquery-public-data".samples.natality'
# Top 5 years with the greatest year-over-year % change in new families with single child
df = (
  session.table(table_path)
  .where(F.col("ever_born") == 1)
  .groupBy("year")
  .agg(F.count("*").alias("num_single_child_families"))
  .withColumn(
    "last_year_num_single_child_families",
    F.lag(F.col("num_single_child_families"), 1).over(Window.orderBy("year"))
  )
  .withColumn(
    "percent_change",
    (F.col("num_single_child_families") - F.col("last_year_num_single_child_families"))
    / F.col("last_year_num_single_child_families")
  )
  .orderBy(F.abs(F.col("percent_change")).desc())
  .select(
    F.col("year").alias("year"),
    F.format_number("num_single_child_families", 0).alias("new families single child"),
    F.format_number(F.col("percent_change") * 100, 2).alias("percent change"),
  )
  .limit(5)
)
>>> df.sql(optimize=True)
WITH `t94228` AS (
  SELECT
    `natality`.`year` AS `year`,
    COUNT(*) AS `num_single_child_families`
  FROM `bigquery-public-data`.`samples`.`natality` AS `natality`
  WHERE
    `natality`.`ever_born` = 1
  GROUP BY
    `natality`.`year`
), `t39093` AS (
  SELECT
    `t94228`.`year` AS `year`,
    `t94228`.`num_single_child_families` AS `num_single_child_families`,
    LAG(`t94228`.`num_single_child_families`, 1) OVER (ORDER BY `t94228`.`year`) AS `last_year_num_single_child_families`
  FROM `t94228` AS `t94228`
)
SELECT
  `t39093`.`year` AS `year`,
  FORMAT('%\'.0f', ROUND(CAST(`t39093`.`num_single_child_families` AS FLOAT64), 0)) AS `new families single child`,
  FORMAT('%\'.2f', ROUND(CAST((((`t39093`.`num_single_child_families` - `t39093`.`last_year_num_single_child_families`) / `t39093`.`last_year_num_single_child_families`) * 100) AS FLOAT64), 2)) AS `percent change`
FROM `t39093` AS `t39093`
ORDER BY
  ABS(`percent_change`) DESC
LIMIT 5
>>> df.show()
+------+---------------------------+----------------+
| year | new families single child | percent change |
+------+---------------------------+----------------+
| 1989 |         1,650,246         |     25.02      |
| 1974 |          783,448          |     14.49      |
| 1977 |         1,057,379         |     11.38      |
| 1985 |         1,308,476         |     11.15      |
| 1975 |          868,985          |     10.92      |
+------+---------------------------+----------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlframe-3.1.1.tar.gz (29.0 MB view details)

Uploaded Source

Built Distribution

sqlframe-3.1.1-py3-none-any.whl (170.3 kB view details)

Uploaded Python 3

File details

Details for the file sqlframe-3.1.1.tar.gz.

File metadata

  • Download URL: sqlframe-3.1.1.tar.gz
  • Upload date:
  • Size: 29.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sqlframe-3.1.1.tar.gz
Algorithm Hash digest
SHA256 2d1a6f7bb37e2133c580c4374f7764c48ea4f7867dce6d139f9df3379e3874a0
MD5 2ff86a8ef0b5c11d4cf5b5dc464952f2
BLAKE2b-256 08c8fd67e82e163b038417109fe20a5395e8ab9ce19eca5dc0a08fab26941e9c

See more details on using hashes here.

File details

Details for the file sqlframe-3.1.1-py3-none-any.whl.

File metadata

  • Download URL: sqlframe-3.1.1-py3-none-any.whl
  • Upload date:
  • Size: 170.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sqlframe-3.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 289ee4361073ce4cc3daf1c8a7f0430cad5478cf00dc1f88954446c04ad29fa3
MD5 846f4b6ef7dc60f10fdff67da687248b
BLAKE2b-256 df49057946d81dc77fb1a69c6425af7151dc61e5d0cfed169af186ca431b94c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page