Skip to main content

An easily customizable SQL parser and transpiler

Project description

SQLGlot

SQLGlot is a no dependency Python SQL parser and transpiler. It can be used to format SQL or translate between different dialects like Presto, Spark, and SQLite. It aims to read a wide variety of SQL inputs and output syntatically correct SQL in the targeted dialects.

This project is actively in development and alpha level quality.

You can easily customize the parser to support UDF's across dialects as well through the transform API.

Syntax errors are highlighted and dialect incompatibilities can warn or raise depending on configurations.

Examples

Formatting and Transpiling

Read in a SQL statement with a CTE and CASTING to a REAL and then transpiling to Spark.

Spark uses backticks as identifiers and the REAL type is transpiled to FLOAT.

import sqlglot

sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
sqlglot.transpile(sql, write='spark', identify=True, pretty=True)[0])
WITH baz AS (
    SELECT
    `a`,
    `c`
    FROM `foo`
    WHERE
    `a` = 1
)
SELECT
  `f`.`a`,
  `b`.`b`,
  `baz`.`c`,
  CAST(`b`.`a` AS FLOAT) AS d
FROM `foo` AS f
JOIN `bar` AS b ON
  `f`.`a` = `b`.`a`
LEFT JOIN `baz` ON
  `f`.`a` = `baz`.`a`

Custom Transforms

A simple transform on types can be accomplished by providing a dict of Expression/TokenType => lambda/string

from sqlglot import *

transpile("SELECT CAST(a AS INT) FROM x", transforms={TokenType.INT: 'SPECIAL INT'})[0]
SELECT CAST(a AS SPECIAL INT) FROM x

More complicated transforms can be accomplished by using the Tokenizer, Parser, and Generator directly.

In this example, we want to parse a UDF SPECIAL_UDF and then output another version called SPECIAL_UDF_INVERSE with the arguments switched.

from sqlglot import *
from sqlglot.expressions import Func

class SpecialUDF(Func):
    arg_types = {'a': True, 'b': True}

tokens = Tokenizer().tokenize("SELECT SPECIAL_UDF(a, b) FROM x")

Here is the output of the tokenizer.

[
    <Token token_type: TokenType.SELECT, text: SELECT, line: 0, col: 0>,
    <Token token_type: TokenType.VAR, text: SPECIAL_UDF, line: 0, col: 7>,
    <Token token_type: TokenType.L_PAREN, text: (, line: 0, col: 18>,
    <Token token_type: TokenType.VAR, text: a, line: 0, col: 19>,
    <Token token_type: TokenType.COMMA, text: ,, line: 0, col: 20>,
    <Token token_type: TokenType.VAR, text: b, line: 0, col: 22>,
    <Token token_type: TokenType.R_PAREN, text: ), line: 0, col: 23>,
    <Token token_type: TokenType.FROM, text: FROM, line: 0, col: 25>,
    <Token token_type: TokenType.VAR, text: x, line: 0, col: 30>,
]

expression = Parser(functions={
    'SPECIAL_UDF': lambda args: SpecialUDF(a=args[0], b=args[1]),
}).parse(tokens)[0]

The expression tree produced by the parser.

(FROM this:
 (TABLE this: x, db: ), expression:
 (SELECT expressions:
  (COLUMN this:
   (FUNC a:
    (COLUMN this: a, db: , table: ), b:
    (COLUMN this: b, db: , table: )), db: , table: )))

Finally generating the new SQL.

Generator(transforms={
    SpecialUDF: lambda self, e: f"SPECIAL_UDF_INVERSE({self.sql(e, 'b')}, {self.sql(e, 'a')})"
}).generate(expression)
SELECT SPECIAL_UDF_INVERSE(b, a) FROM x

Parse Errors

A syntax error will result in an parse error.

transpile("SELECT foo( FROM bar")
sqlglot.errors.ParseError: Expected )
  SELECT foo( __FROM__ bar

Unsupported Errors

Presto APPROX_DISTINCT supports the accuracy argument which is not supported in Spark.

transpile(
    'SELECT APPROX_DISTINCT(a, 0.1) FROM foo',
    read='presto',
    write='spark',
)
WARNING:root:APPROX_COUNT_DISTINCT does not support accuracy

SELECT APPROX_COUNT_DISTINCT(a) FROM foo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlglot-0.2.2.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

sqlglot-0.2.2-py3-none-any.whl (15.2 kB view details)

Uploaded Python 3

File details

Details for the file sqlglot-0.2.2.tar.gz.

File metadata

  • Download URL: sqlglot-0.2.2.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for sqlglot-0.2.2.tar.gz
Algorithm Hash digest
SHA256 d0b7c785c59514134e984f82463ef9dec1f285ba6af732a42c41d048aed978fe
MD5 4409e8fac202f967cc61c81eb2f9197f
BLAKE2b-256 aa7264f7ffb85302207c1bdf7044d084bd1e1fb7dd34bfa3f4076d44d93a9cd4

See more details on using hashes here.

Provenance

File details

Details for the file sqlglot-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: sqlglot-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 15.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for sqlglot-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6380b828ef093f9c28976a6749517ff6fd8624b818bb86b4e926c5dd75414955
MD5 644ed220638596d6005a208c76f7d694
BLAKE2b-256 64f05af5fc14851313b2a1e7452b4ed5b43c8a1b63357054a05bc3d464b4bc69

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page