Skip to main content

An easily customizable SQL parser and transpiler

Project description

SQLGlot

SQLGlot is a no dependency Python SQL parser and transpiler. It can be used to format SQL or translate between different dialects like Presto, Spark, and SQLite. It aims to read a wide variety of SQL inputs and output syntatically correct SQL in the targeted dialects.

This project is actively in development and alpha level quality.

You can easily customize the parser to support UDF's across dialects as well through the transform API.

Syntax errors are highlighted and dialect incompatibilities can warn or raise depending on configurations.

Examples

Formatting and Transpiling

Read in a SQL statement with a CTE and CASTING to a REAL and then transpiling to Spark.

Spark uses backticks as identifiers and the REAL type is transpiled to FLOAT.

import sqlglot

sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
sqlglot.transpile(sql, write='spark', identify=True, pretty=True)[0])
WITH baz AS (
    SELECT
    `a`,
    `c`
    FROM `foo`
    WHERE
    `a` = 1
)
SELECT
  `f`.`a`,
  `b`.`b`,
  `baz`.`c`,
  CAST(`b`.`a` AS FLOAT) AS d
FROM `foo` AS f
JOIN `bar` AS b ON
  `f`.`a` = `b`.`a`
LEFT JOIN `baz` ON
  `f`.`a` = `baz`.`a`

Custom Transforms

A simple transform on types can be accomplished by providing a dict of Expression/TokenType => lambda/string

from sqlglot import *

transpile("SELECT CAST(a AS INT) FROM x", transforms={TokenType.INT: 'SPECIAL INT'})[0]
SELECT CAST(a AS SPECIAL INT) FROM x

More complicated transforms can be accomplished by using the Tokenizer, Parser, and Generator directly.

In this example, we want to parse a UDF SPECIAL_UDF and then output another version called SPECIAL_UDF_INVERSE with the arguments switched.

from sqlglot import *
from sqlglot.expressions import Func

class SpecialUDF(Func):
    arg_types = {'a': True, 'b': True}

tokens = Tokenizer().tokenize("SELECT SPECIAL_UDF(a, b) FROM x")

Here is the output of the tokenizer.

[
    <Token token_type: TokenType.SELECT, text: SELECT, line: 0, col: 0>,
    <Token token_type: TokenType.VAR, text: SPECIAL_UDF, line: 0, col: 7>,
    <Token token_type: TokenType.L_PAREN, text: (, line: 0, col: 18>,
    <Token token_type: TokenType.VAR, text: a, line: 0, col: 19>,
    <Token token_type: TokenType.COMMA, text: ,, line: 0, col: 20>,
    <Token token_type: TokenType.VAR, text: b, line: 0, col: 22>,
    <Token token_type: TokenType.R_PAREN, text: ), line: 0, col: 23>,
    <Token token_type: TokenType.FROM, text: FROM, line: 0, col: 25>,
    <Token token_type: TokenType.VAR, text: x, line: 0, col: 30>,
]

expression = Parser(functions={
    'SPECIAL_UDF': lambda args: SpecialUDF(a=args[0], b=args[1]),
}).parse(tokens)[0]

The expression tree produced by the parser.

(FROM this:
 (TABLE this: x, db: ), expression:
 (SELECT expressions:
  (COLUMN this:
   (FUNC a:
    (COLUMN this: a, db: , table: ), b:
    (COLUMN this: b, db: , table: )), db: , table: )))

Finally generating the new SQL.

Generator(transforms={
    SpecialUDF: lambda self, e: f"SPECIAL_UDF_INVERSE({self.sql(e, 'b')}, {self.sql(e, 'a')})"
}).generate(expression)
SELECT SPECIAL_UDF_INVERSE(b, a) FROM x

Parse Errors

A syntax error will result in an parse error.

transpile("SELECT foo( FROM bar")
sqlglot.errors.ParseError: Expected )
  SELECT foo( __FROM__ bar

Unsupported Errors

Presto APPROX_DISTINCT supports the accuracy argument which is not supported in Spark.

transpile(
    'SELECT APPROX_DISTINCT(a, 0.1) FROM foo',
    read='presto',
    write='spark',
)
WARNING:root:APPROX_COUNT_DISTINCT does not support accuracy

SELECT APPROX_COUNT_DISTINCT(a) FROM foo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlglot-0.2.3.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

sqlglot-0.2.3-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file sqlglot-0.2.3.tar.gz.

File metadata

  • Download URL: sqlglot-0.2.3.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for sqlglot-0.2.3.tar.gz
Algorithm Hash digest
SHA256 c1ea7ae6da277dbfde0598a594c59a075dfcbfaa0f2abfd952af12ecf51d0a17
MD5 9d3ac0ddd3579a262b445f1085707e53
BLAKE2b-256 b760cfda2cff0b26af172a5978f97c4fe75905602036b186b29cbda61cc52252

See more details on using hashes here.

Provenance

File details

Details for the file sqlglot-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: sqlglot-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for sqlglot-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6e82ec8b2ddde5574363277b915b90c1f4cd9d32ded1d6625101a80ff5764b5a
MD5 d5c96a238799be9fc91ad0e4bb4b7b66
BLAKE2b-256 b932fb7b7e232d07f0f6a5f7b92d7b1f8f22d2046841f68731b82c9934be2050

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page