Skip to main content

An easily customizable SQL parser and transpiler

Project description

SQLGlot

SQLGlot is a no dependency Python SQL parser and transpiler. It can be used to format SQL or translate between different dialects like Presto, Spark, and Hive. It aims to read a wide variety of SQL inputs and output syntatically correct SQL in the targeted dialects.

It is currently the fastest pure-Python SQL parser.

You can easily customize the parser to support UDF's across dialects as well through the transform API.

Syntax errors are highlighted and dialect incompatibilities can warn or raise depending on configurations.

Install

From PyPI

pip3 install sqlglot

Or with a local checkout

pip3 install -e .

Examples

Easily translate from one dialect to another. For example, date/time functions vary from dialects and can be hard to deal with.

import sqlglot
sqlglot.transpile("SELECT EPOCH_MS(1618088028295)", read='duckdb', write='hive')
SELECT TO_UTC_TIMESTAMP(FROM_UNIXTIME(1618088028295 / 1000, 'yyyy-MM-dd HH:mm:ss'), 'UTC')

SQLGlot can even translate custom time formats.

import sqlglot
sqlglot.transpile("SELECT STRFTIME(x, '%y-%-m-%S')", read='duckdb', write='hive')
SELECT DATE_FORMAT(x, 'yy-M-ss')"

Formatting and Transpiling

Read in a SQL statement with a CTE and CASTING to a REAL and then transpiling to Spark.

Spark uses backticks as identifiers and the REAL type is transpiled to FLOAT.

import sqlglot

sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
sqlglot.transpile(sql, write='spark', identify=True, pretty=True)[0]
WITH baz AS (
    SELECT
      `a`,
      `c`
    FROM `foo`
    WHERE
      `a` = 1
)
SELECT
  `f`.`a`,
  `b`.`b`,
  `baz`.`c`,
  CAST(`b`.`a` AS FLOAT) AS d
FROM `foo` AS f
JOIN `bar` AS b ON
  `f`.`a` = `b`.`a`
LEFT JOIN `baz` ON
  `f`.`a` = `baz`.`a`

Customization

Custom Types

A simple transform on types can be accomplished by providing a corresponding mapping:

from sqlglot import *
from sqlglot import expressions as exp

transpile("SELECT CAST(a AS INT) FROM x", type_mapping={exp.DataType.Type.INT: "SPECIAL INT"})[0]
SELECT CAST(a AS SPECIAL INT) FROM x

More complicated transforms can be accomplished by using the Tokenizer, Parser, and Generator directly.

Custom Functions

In this example, we want to parse a UDF SPECIAL_UDF and then output another version called SPECIAL_UDF_INVERSE with the arguments switched.

from sqlglot import *
from sqlglot.expressions import Func

class SpecialUdf(Func):
    arg_types = {'a': True, 'b': True}

tokens = Tokenizer().tokenize("SELECT SPECIAL_UDF(a, b) FROM x")

Here is the output of the tokenizer:

[
    <Token token_type: TokenType.SELECT, text: SELECT, line: 0, col: 0>,
    <Token token_type: TokenType.VAR, text: SPECIAL_UDF, line: 0, col: 7>,
    <Token token_type: TokenType.L_PAREN, text: (, line: 0, col: 18>,
    <Token token_type: TokenType.VAR, text: a, line: 0, col: 19>,
    <Token token_type: TokenType.COMMA, text: ,, line: 0, col: 20>,
    <Token token_type: TokenType.VAR, text: b, line: 0, col: 22>,
    <Token token_type: TokenType.R_PAREN, text: ), line: 0, col: 23>,
    <Token token_type: TokenType.FROM, text: FROM, line: 0, col: 25>,
    <Token token_type: TokenType.VAR, text: x, line: 0, col: 30>,
]

expression = Parser(functions={
    **SpecialUdf.default_parser_mappings(),
}).parse(tokens)[0]

The expression tree produced by the parser:

(SELECT distinct: False, expressions:
  (SPECIALUDF a:
    (COLUMN this:
      (IDENTIFIER this: a, quoted: False)), b:
    (COLUMN this:
      (IDENTIFIER this: b, quoted: False))), from:
  (FROM expressions:
    (TABLE this:
      (IDENTIFIER this: x, quoted: False))))

Finally generating the new SQL:

Generator(transforms={
    SpecialUdf: lambda self, e: f"SPECIAL_UDF_INVERSE({self.sql(e, 'b')}, {self.sql(e, 'a')})"
}).generate(expression)
SELECT SPECIAL_UDF_INVERSE(b, a) FROM x

Syntax Tree Transformation

There is also a way to transform the parsed tree directly by applying a mapping function to each tree node recursively:

import sqlglot
import sqlglot.expressions as exp

expression_tree = sqlglot.parse_one("SELECT a FROM x")

def transformer(node):
    if isinstance(node, exp.Column) and node.text("this") == "a":
        return sqlglot.parse_one("FUN(a)")
    return node

transformed_tree = expression_tree.transform(transformer)
transformed_tree.sql()

The snippet above produces the following transformed expression:

SELECT FUN(a) FROM x

Parser Errors

A syntax error will result in a parser error.

transpile("SELECT foo( FROM bar")
sqlglot.errors.ParseError: Expected )
  SELECT foo( __FROM__ bar

Unsupported Errors

Presto APPROX_DISTINCT supports the accuracy argument which is not supported in Spark.

transpile(
    'SELECT APPROX_DISTINCT(a, 0.1) FROM foo',
    read='presto',
    write='spark',
)
WARNING:root:APPROX_COUNT_DISTINCT does not support accuracy

SELECT APPROX_COUNT_DISTINCT(a) FROM foo

Rewrite Sql

Modify sql expressions like adding a CTAS

from sqlglot import Generator, parse_one
from sqlglot.rewriter import Rewriter

expression = parse_one("SELECT * FROM y")
Rewriter(expression).ctas('x').expression.sql()
CREATE TABLE x AS SELECT * FROM y

Benchmarks

Benchmarks run on Python 3.9.6 in seconds.

Query sqlglot sqlparse moz_sql_parser sqloxide
short 0.00038 0.00104 0.00174 0.000060
long 0.00508 0.01522 0.02162 0.000597
crazy 0.01871 3.49415 0.35346 0.003104

Run Tests and Lint

python -m unittest && python -m pylint sqlglot/ tests/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlglot-1.25.3.tar.gz (38.1 kB view details)

Uploaded Source

Built Distribution

sqlglot-1.25.3-py3-none-any.whl (39.2 kB view details)

Uploaded Python 3

File details

Details for the file sqlglot-1.25.3.tar.gz.

File metadata

  • Download URL: sqlglot-1.25.3.tar.gz
  • Upload date:
  • Size: 38.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sqlglot-1.25.3.tar.gz
Algorithm Hash digest
SHA256 fed1ebed22a98644450d16022fff93990fcc9be126a3f65b0928bad097afdf20
MD5 64042e7988dff1192b9b06fbd9723e46
BLAKE2b-256 c0a4d7264f2949d13592594b27755823c6902440e50a42968ce492aefa5692ff

See more details on using hashes here.

Provenance

File details

Details for the file sqlglot-1.25.3-py3-none-any.whl.

File metadata

  • Download URL: sqlglot-1.25.3-py3-none-any.whl
  • Upload date:
  • Size: 39.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sqlglot-1.25.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b5dc176c7897d31527994b403d28c8b076d36ce35df353d949a6ba7fe3a1a7fe
MD5 e84c49f36c0dfcf1b3d2b37b4fab95c3
BLAKE2b-256 eabe533a2078a76f8076fccad355e468b41461b2b20a6327f1bd553b32a7b59d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page