Skip to main content

Pydantic data models for the STAC spec

Project description

stac-pydantic

GitHub Workflow Status (with event)

Pydantic models for STAC Catalogs, Collections, Items, and the STAC API spec. Initially developed by arturo-ai.

The main purpose of this library is to provide reusable request/response models for tools such as fastapi. For more comprehensive schema validation and robust extension support, use pystac.

Installation

python -m pip install stac-pydantic

# or

python -m pip install stac-pydantic["validation"]

For local development:

python -m pip install -e '.[dev,lint]'
stac-pydantic STAC Version STAC API Version Pydantic Version
1.2.x 1.0.0-beta.1 <1* ^1.6
1.3.x 1.0.0-beta.2 <1* ^1.6
2.0.x 1.0.0 <1* ^1.6
3.0.x 1.0.0 1.0.0 ^2.4
3.1.x 1.0.0 1.0.0 ^2.4

* various beta releases, specs not fully implemented

Development

Install the pre-commit hooks:

pre-commit install

Testing

Ensure you have all Python versions installed that the tests will be run against. If using pyenv, run:

pyenv install 3.8.18
pyenv install 3.9.18
pyenv install 3.10.13
pyenv install 3.11.5
pyenv local 3.8.18 3.9.18 3.10.13 3.11.5

Run the entire test suite:

tox

Run a single test case using the standard pytest convention:

python -m pytest -v tests/test_models.py::test_item_extensions

Usage

Loading Models

Load data into models with standard pydantic:

from stac_pydantic import Catalog

stac_catalog = {
  "type": "Catalog",
  "stac_version": "1.0.0",
  "id": "sample",
  "description": "This is a very basic sample catalog.",
  "links": [
    {
      "href": "item.json",
      "rel": "item"
    }
  ]
}

catalog = Catalog(**stac_catalog)
assert catalog.id == "sample"
assert catalog.links[0].href == "item.json"

Extensions

STAC defines many extensions which let the user customize the data in their catalog. stac-pydantic.extensions.validate_extensions gets the JSON schemas from the URLs provided in the stac_extensions property (caching the last fetched ones), and will validate a dict, Item, Collection or Catalog against those fetched schemas:

from stac_pydantic import Item
from stac_pydantic.extensions import validate_extensions

stac_item = {
    "id": "12345",
    "type": "Feature",
    "stac_extensions": [
        "https://stac-extensions.github.io/eo/v1.0.0/schema.json"
    ],
    "geometry": { "type": "Point", "coordinates": [0, 0] },
    "bbox": [0.0, 0.0, 0.0, 0.0],
    "properties": {
        "datetime": "2020-03-09T14:53:23.262208+00:00",
        "eo:cloud_cover": 25,
    },
    "links": [],
    "assets": {},
}

model = Item(**stac_item)
validate_extensions(model, reraise_exception=True)
assert getattr(model.properties, "eo:cloud_cover") == 25

The complete list of current STAC Extensions can be found here.

Vendor Extensions

The same procedure described above works for any STAC Extension schema as long as it can be loaded from a public url.

STAC API

The STAC API Specs extent the core STAC specification for implementing dynamic catalogs. STAC Objects used in an API context should always import models from the api subpackage. This package extends Catalog, Collection, and Item models with additional fields and validation rules and introduces Collections and ItemCollections models and Pagination/ Search Links. It also implements models for defining ItemSeach queries.

from stac_pydantic.api import Item, ItemCollection

stac_item = Item(**{
    "id": "12345",
    "type": "Feature",
    "stac_extensions": [],
    "geometry": { "type": "Point", "coordinates": [0, 0] },
    "bbox": [0.0, 0.0, 0.0, 0.0],
    "properties": {
        "datetime": "2020-03-09T14:53:23.262208+00:00",
    },
    "collection": "CS3",
    "links": [
          {
            "rel": "self",
            "href": "http://stac.example.com/catalog/collections/CS3-20160503_132130_04/items/CS3-20160503_132130_04.json"
          },
          {
            "rel": "collection",
            "href": "http://stac.example.com/catalog/CS3-20160503_132130_04/catalog.json"
          },
          {
            "rel": "root",
            "href": "http://stac.example.com/catalog"
          }],
    "assets": {},
    })

stac_item_collection = ItemCollection(**{
    "type": "FeatureCollection",
    "features": [stac_item],
    "links": [
          {
            "rel": "self",
            "href": "http://stac.example.com/catalog/search?collection=CS3",
            "type": "application/geo+json"
          },
          {
            "rel": "root",
            "href": "http://stac.example.com/catalog",
            "type": "application/json"
          }],
    })

Exporting Models

Most STAC extensions are namespaced with a colon (ex eo:gsd) to keep them distinct from other extensions. Because Python doesn't support the use of colons in variable names, we use Pydantic aliasing to add the namespace upon model export. This requires exporting the model with the by_alias = True parameter. Export methods (model_dump() and model_dump_json()) for models in this library have by_alias and exclude_unset st to True by default:

item_dict = item.model_dump()
assert item_dict['properties']['landsat:row'] == item.properties.row == 250

CLI

Usage: stac-pydantic [OPTIONS] COMMAND [ARGS]...

  stac-pydantic cli group

Options:
  --help  Show this message and exit.

Commands:
  validate-item  Validate STAC Item

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stac_pydantic-3.1.3.tar.gz (20.7 kB view details)

Uploaded Source

Built Distribution

stac_pydantic-3.1.3-py3-none-any.whl (23.3 kB view details)

Uploaded Python 3

File details

Details for the file stac_pydantic-3.1.3.tar.gz.

File metadata

  • Download URL: stac_pydantic-3.1.3.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for stac_pydantic-3.1.3.tar.gz
Algorithm Hash digest
SHA256 40d3ed7604e4520ad53c16b9d0c9ba80d398269a11b0ee090cbabd73b6b198ec
MD5 0d447641cc7e37e89b4cb9a98128801f
BLAKE2b-256 994b71c3d83a8f2c990bd16baae0b95d996a50a92c9d4449952ea5099ce5f187

See more details on using hashes here.

File details

Details for the file stac_pydantic-3.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for stac_pydantic-3.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c984f9ee573459041429801a3f7e5af42c94cc9b4e466ab06f59e99ee8e5b826
MD5 5369e7148bc7306e596228309f513f99
BLAKE2b-256 dc9cdb0d0771aeb1ffc4a1315ece564f5665a91516b90919d1149ed9645b84ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page