Skip to main content

Pydantic data models for the STAC spec

Project description

stac-pydantic tests

Pydantic models for STAC Catalogs, Collections, Items, and the STAC API spec.

Installation

pip install stac-pydantic
stac-pydantic stac
1.1.x 0.9.0
1.2.x 1.0.0-beta.1
1.3.x 1.0.0-beta.2

Usage

Loading Models

Load data into models with standard pydantic:

from stac_pydantic import Catalog

stac_catalog = {
  "stac_version": "0.9.0",
  "id": "sample",
  "description": "This is a very basic sample catalog.",
  "links": [
    {
      "href": "item.json",
      "rel": "item"
    }
  ]
}

catalog = Catalog(**stac_catalog)
assert catalog.id == "sample"
assert catalog.links[0].href == "item.json"

Extensions

STAC defines many extensions which let the user customize the data in their catalog. Extensions can be validated implicitly or explicitly:

Implicit

The item_model_factory function creates an appropriate Pydantic model based on the structure of the item by looking at the extensions defined by the stac_extensions member. The model can be created once and reused for the life of the interpreter.

from stac_pydantic import item_model_factory

stac_item = {
    "type": "Feature",
    "stac_extensions": [
        "eo"
    ],
    "geometry": ...,
    "properties": {
        "datetime": "2020-03-09T14:53:23.262208+00:00",
        "eo:gsd": 0.15,
        "eo:cloud_cover": 17
    },
    "links": ...,
    "assets": ...,
}

model = item_model_factory(stac_item)
item = model(**stac_item)

>>> pydantic.error_wrappers.ValidationError: 1 validation error for Item
    __root__ -> properties -> eo:bands
        field required (eo) (type=value_error.missing)

The stac_pydantic.validate_item function provides a convenience wrapper over item_model_factory for one-off validation:

from stac_pydantic import validate_item

assert validate_item(stac_item)

Explicit

Subclass any of the models provided by the library to declare a customized validator:

from stac_pydantic import Item, ItemProperties, Extensions

class CustomProperties(Extensions.view, ItemProperties):
    ...

class CustomItem(Item):
    properties: CustomProperties # Override properties model

stac_item = {
    "type": "Feature",
    "geometry": ...,
    "properties": {
        "datetime": "2020-03-09T14:53:23.262208+00:00",
        "view:off_nadir": 3.78,
    },
    "links": ...,
    "assets": ...,
}

item = CustomItem(**stac_item)
assert item.properties.off_nadir == 3.78

Vendor Extensions

STAC allows 3rd parties to define their own extensions for specific implementations which aren't currently covered by the available content extensions. You can validate vendor extensions in a similar fashion:

from pydantic import BaseModel
from stac_pydantic import Extensions, Item

# 1. Create a model for the extension
class LandsatExtension(BaseModel):
    row: int
    column: int

    # Setup extension namespace in model config
    class Config:
        allow_population_by_fieldname = True
        alias_generator = lambda field_name: f"landsat:{field_name}"

# 2. Register the extension
Extensions.register("landsat", LandsatExtension)

# 3. Use model as normal
stac_item = {
    "type": "Feature",
    "stac_extensions": [
        "landsat",
        "view"
],
    "geometry": ...,
    "properties": {
        "datetime": "2020-03-09T14:53:23.262208+00:00",
        "view:off_nadir": 3.78,
        "landsat:row": 230,
        "landsat:column": 178 
    },
    "links": ...,
    "assets": ...,
}

item = Item(**stac_item)
assert item.properties.row == 230
assert item.properties.column == 178

Vendor extensions are often defined in stac_extensions as a remote reference to a JSON schema. When registering extensions, you may use the alias kwarg to indicate that the model represents a specific remote reference:

Extensions.register("landsat", LandsatExtension, alias="https://example.com/stac/landsat-extension/1.0/schema.json")

Exporting Models

Most STAC extensions are namespaced with a colon (ex eo:gsd) to keep them distinct from other extensions. Because Python doesn't support the use of colons in variable names, we use Pydantic aliasing to add the namespace upon model export. This requires exporting the model with the by_alias = True parameter. A convenience method (to_dict()) is provided to export models with extension namespaces:

item_dict = item.to_dict()
assert item_dict['properties']['landsat:row'] == item.properties.row == 250

CLI

Usage: stac-pydantic [OPTIONS] COMMAND [ARGS]...

  stac-pydantic cli group

Options:
  --help  Show this message and exit.

Commands:
  validate-item  Validate STAC Item

Testing

python setup.py test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stac-pydantic-1.3.4.tar.gz (14.8 kB view details)

Uploaded Source

Built Distribution

stac_pydantic-1.3.4-py3-none-any.whl (23.1 kB view details)

Uploaded Python 3

File details

Details for the file stac-pydantic-1.3.4.tar.gz.

File metadata

  • Download URL: stac-pydantic-1.3.4.tar.gz
  • Upload date:
  • Size: 14.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.1

File hashes

Hashes for stac-pydantic-1.3.4.tar.gz
Algorithm Hash digest
SHA256 c367839250747d924e0c7ce1a32fb1572c773d26667e0ad74b9d5cea0c655f3f
MD5 05a6955ffe0354054292dfe9dffaed23
BLAKE2b-256 87ecdf6f1addf9686a4723b57e468bbf56335a4eef9b1768458eaff377066d22

See more details on using hashes here.

Provenance

File details

Details for the file stac_pydantic-1.3.4-py3-none-any.whl.

File metadata

  • Download URL: stac_pydantic-1.3.4-py3-none-any.whl
  • Upload date:
  • Size: 23.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.1

File hashes

Hashes for stac_pydantic-1.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 68249f7ac20873a5d8c1c63a1002a11c9f69ebe0bb84123b00a65f08637d3029
MD5 5943f597bb04c4301bd2c2b2d390f90b
BLAKE2b-256 ad03468715f831158d350a24d646ebb8965d5546a0e5f40231d422b1d5e18bea

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page