Skip to main content

Pydantic data models for the STAC spec

Project description

stac-pydantic

GitHub Workflow Status (with event)

Pydantic models for STAC Catalogs, Collections, Items, and the STAC API spec. Initially developed by arturo-ai.

The main purpose of this library is to provide reusable request/response models for tools such as fastapi. For more comprehensive schema validation and robust extension support, use pystac.

Installation

python -m pip install stac-pydantic

For local development:

python -m pip install -e '.[dev,lint]'
stac-pydantic STAC Version STAC API Version Pydantic Version
1.2.x 1.0.0-beta.1 <1* ^1.6
1.3.x 1.0.0-beta.2 <1* ^1.6
2.0.x 1.0.0 <1* ^1.6
3.0.x 1.0.0 1.0.0 ^2.4
3.1.x 1.0.0 1.0.0 ^2.4

* various beta releases, specs not fully implemented

Development

Install the pre-commit hooks:

pre-commit install

Testing

Ensure you have all Python versions installed that the tests will be run against. If using pyenv, run:

pyenv install 3.8.18
pyenv install 3.9.18
pyenv install 3.10.13
pyenv install 3.11.5
pyenv local 3.8.18 3.9.18 3.10.13 3.11.5

Run the entire test suite:

tox

Run a single test case using the standard pytest convention:

python -m pytest -v tests/test_models.py::test_item_extensions

Usage

Loading Models

Load data into models with standard pydantic:

from stac_pydantic import Catalog

stac_catalog = {
  "type": "Catalog",
  "stac_version": "1.0.0",
  "id": "sample",
  "description": "This is a very basic sample catalog.",
  "links": [
    {
      "href": "item.json",
      "rel": "item"
    }
  ]
}

catalog = Catalog(**stac_catalog)
assert catalog.id == "sample"
assert catalog.links[0].href == "item.json"

Extensions

STAC defines many extensions which let the user customize the data in their catalog. stac-pydantic.extensions.validate_extensions will validate a dict, Item, Collection or Catalog against the schema urls provided in the stac_extensions property:

from stac_pydantic import Item
from stac_pydantic.extensions import validate_extensions

stac_item = {
    "id": "12345",
    "type": "Feature",
    "stac_extensions": [
        "https://stac-extensions.github.io/eo/v1.0.0/schema.json"
    ],
    "geometry": { "type": "Point", "coordinates": [0, 0] },
    "bbox": [0.0, 0.0, 0.0, 0.0],
    "properties": {
        "datetime": "2020-03-09T14:53:23.262208+00:00",
        "eo:cloud_cover": 25,
    },
    "links": [],
    "assets": {},
}

model = Item(**stac_item)
validate_extensions(model, reraise_exception=True)
assert getattr(model.properties, "eo:cloud_cover") == 25

The complete list of current STAC Extensions can be found here.

Vendor Extensions

The same procedure described above works for any STAC Extension schema as long as it can be loaded from a public url.

STAC API

The STAC API Specs extent the core STAC specification for implementing dynamic catalogs. STAC Objects used in an API context should always import models from the api subpackage. This package extends Catalog, Collection, and Item models with additional fields and validation rules and introduces Collections and ItemCollections models and Pagination/ Search Links. It also implements models for defining ItemSeach queries.

from stac_pydantic.api import Item, ItemCollection

stac_item = Item(**{
    "id": "12345",
    "type": "Feature",
    "stac_extensions": [],
    "geometry": { "type": "Point", "coordinates": [0, 0] },
    "bbox": [0.0, 0.0, 0.0, 0.0],
    "properties": {
        "datetime": "2020-03-09T14:53:23.262208+00:00",
    },
    "collection": "CS3",
    "links": [
          {
            "rel": "self",
            "href": "http://stac.example.com/catalog/collections/CS3-20160503_132130_04/items/CS3-20160503_132130_04.json"
          },
          {
            "rel": "collection",
            "href": "http://stac.example.com/catalog/CS3-20160503_132130_04/catalog.json"
          },
          {
            "rel": "root",
            "href": "http://stac.example.com/catalog"
          }],
    "assets": {},
    })

stac_item_collection = ItemCollection(**{
    "type": "FeatureCollection",
    "features": [stac_item],
    "links": [
          {
            "rel": "self",
            "href": "http://stac.example.com/catalog/search?collection=CS3",
            "type": "application/geo+json"
          },
          {
            "rel": "root",
            "href": "http://stac.example.com/catalog",
            "type": "application/json"
          }],
    })

Exporting Models

Most STAC extensions are namespaced with a colon (ex eo:gsd) to keep them distinct from other extensions. Because Python doesn't support the use of colons in variable names, we use Pydantic aliasing to add the namespace upon model export. This requires exporting the model with the by_alias = True parameter. Export methods (model_dump() and model_dump_json()) for models in this library have by_alias and exclude_unset st to True by default:

item_dict = item.model_dump()
assert item_dict['properties']['landsat:row'] == item.properties.row == 250

CLI

Usage: stac-pydantic [OPTIONS] COMMAND [ARGS]...

  stac-pydantic cli group

Options:
  --help  Show this message and exit.

Commands:
  validate-item  Validate STAC Item

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stac_pydantic-3.1.0.tar.gz (20.2 kB view details)

Uploaded Source

Built Distribution

stac_pydantic-3.1.0-py3-none-any.whl (22.9 kB view details)

Uploaded Python 3

File details

Details for the file stac_pydantic-3.1.0.tar.gz.

File metadata

  • Download URL: stac_pydantic-3.1.0.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for stac_pydantic-3.1.0.tar.gz
Algorithm Hash digest
SHA256 99cde940cbf045acea139163a6b25e20c93514dae2e9189074d7891d1c649ec8
MD5 7e8618c4809747446803389998518dfd
BLAKE2b-256 d677d1506245dd5b9fbaf95cd3aada06f676632da4b610d6b2e23e10b97160f4

See more details on using hashes here.

Provenance

File details

Details for the file stac_pydantic-3.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for stac_pydantic-3.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8d15dfde76fd745193ceda3420f9139a83f875cc33425a24f0735c1bbe66d50c
MD5 81b4bbfaf54611d8ed07cee3f9174e05
BLAKE2b-256 41319d9d8348f41e73e10a11452f1df47135f289b3692062bc702971fc57b3a6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page