Pydantic data models for the STAC spec
Project description
stac-pydantic
Pydantic models for STAC Catalogs, Collections, Items, and the STAC API spec. Initially developed by arturo-ai.
The main purpose of this library is to provide reusable request/response models for tools such as fastapi. For more comprehensive schema validation and robust extension support, use pystac.
Installation
python -m pip install stac-pydantic
For local development:
python -m pip install -e '.[dev,lint]'
stac-pydantic | STAC Version | STAC API Version | Pydantic Version |
---|---|---|---|
1.2.x | 1.0.0-beta.1 | <1* | ^1.6 |
1.3.x | 1.0.0-beta.2 | <1* | ^1.6 |
2.0.x | 1.0.0 | <1* | ^1.6 |
3.0.x | 1.0.0 | 1.0.0 | ^2.4 |
3.1.x | 1.0.0 | 1.0.0 | ^2.4 |
* various beta releases, specs not fully implemented
Development
Install the pre-commit hooks:
pre-commit install
Testing
Ensure you have all Python versions installed that the tests will be run against. If using pyenv, run:
pyenv install 3.8.18
pyenv install 3.9.18
pyenv install 3.10.13
pyenv install 3.11.5
pyenv local 3.8.18 3.9.18 3.10.13 3.11.5
Run the entire test suite:
tox
Run a single test case using the standard pytest convention:
python -m pytest -v tests/test_models.py::test_item_extensions
Usage
Loading Models
Load data into models with standard pydantic:
from stac_pydantic import Catalog
stac_catalog = {
"type": "Catalog",
"stac_version": "1.0.0",
"id": "sample",
"description": "This is a very basic sample catalog.",
"links": [
{
"href": "item.json",
"rel": "item"
}
]
}
catalog = Catalog(**stac_catalog)
assert catalog.id == "sample"
assert catalog.links[0].href == "item.json"
Extensions
STAC defines many extensions which let the user customize the data in their catalog. stac-pydantic.extensions.validate_extensions
will validate a dict
, Item
, Collection
or Catalog
against the schema urls provided in the stac_extensions
property:
from stac_pydantic import Item
from stac_pydantic.extensions import validate_extensions
stac_item = {
"id": "12345",
"type": "Feature",
"stac_extensions": [
"https://stac-extensions.github.io/eo/v1.0.0/schema.json"
],
"geometry": { "type": "Point", "coordinates": [0, 0] },
"bbox": [0.0, 0.0, 0.0, 0.0],
"properties": {
"datetime": "2020-03-09T14:53:23.262208+00:00",
"eo:cloud_cover": 25,
},
"links": [],
"assets": {},
}
model = Item(**stac_item)
validate_extensions(model, reraise_exception=True)
assert getattr(model.properties, "eo:cloud_cover") == 25
The complete list of current STAC Extensions can be found here.
Vendor Extensions
The same procedure described above works for any STAC Extension schema as long as it can be loaded from a public url.
STAC API
The STAC API Specs extent the core STAC specification for implementing dynamic catalogs. STAC Objects used in an API context should always import models from the api
subpackage. This package extends
Catalog, Collection, and Item models with additional fields and validation rules and introduces Collections and ItemCollections models and Pagination/ Search Links.
It also implements models for defining ItemSeach queries.
from stac_pydantic.api import Item, ItemCollection
stac_item = Item(**{
"id": "12345",
"type": "Feature",
"stac_extensions": [],
"geometry": { "type": "Point", "coordinates": [0, 0] },
"bbox": [0.0, 0.0, 0.0, 0.0],
"properties": {
"datetime": "2020-03-09T14:53:23.262208+00:00",
},
"collection": "CS3",
"links": [
{
"rel": "self",
"href": "http://stac.example.com/catalog/collections/CS3-20160503_132130_04/items/CS3-20160503_132130_04.json"
},
{
"rel": "collection",
"href": "http://stac.example.com/catalog/CS3-20160503_132130_04/catalog.json"
},
{
"rel": "root",
"href": "http://stac.example.com/catalog"
}],
"assets": {},
})
stac_item_collection = ItemCollection(**{
"type": "FeatureCollection",
"features": [stac_item],
"links": [
{
"rel": "self",
"href": "http://stac.example.com/catalog/search?collection=CS3",
"type": "application/geo+json"
},
{
"rel": "root",
"href": "http://stac.example.com/catalog",
"type": "application/json"
}],
})
Exporting Models
Most STAC extensions are namespaced with a colon (ex eo:gsd
) to keep them distinct from other extensions. Because
Python doesn't support the use of colons in variable names, we use Pydantic aliasing
to add the namespace upon model export. This requires exporting
the model with the by_alias = True
parameter. Export methods (model_dump()
and model_dump_json()
) for models in this library have by_alias
and exclude_unset
st to True
by default:
item_dict = item.model_dump()
assert item_dict['properties']['landsat:row'] == item.properties.row == 250
CLI
Usage: stac-pydantic [OPTIONS] COMMAND [ARGS]...
stac-pydantic cli group
Options:
--help Show this message and exit.
Commands:
validate-item Validate STAC Item
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file stac_pydantic-3.1.0.tar.gz
.
File metadata
- Download URL: stac_pydantic-3.1.0.tar.gz
- Upload date:
- Size: 20.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 99cde940cbf045acea139163a6b25e20c93514dae2e9189074d7891d1c649ec8 |
|
MD5 | 7e8618c4809747446803389998518dfd |
|
BLAKE2b-256 | d677d1506245dd5b9fbaf95cd3aada06f676632da4b610d6b2e23e10b97160f4 |
Provenance
File details
Details for the file stac_pydantic-3.1.0-py3-none-any.whl
.
File metadata
- Download URL: stac_pydantic-3.1.0-py3-none-any.whl
- Upload date:
- Size: 22.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d15dfde76fd745193ceda3420f9139a83f875cc33425a24f0735c1bbe66d50c |
|
MD5 | 81b4bbfaf54611d8ed07cee3f9174e05 |
|
BLAKE2b-256 | 41319d9d8348f41e73e10a11452f1df47135f289b3692062bc702971fc57b3a6 |