Skip to main content

Statistical computations and models for Python

Project description

Travis Build Status Azure CI Build Status Appveyor Build Status Coveralls Coverage

About Statsmodels

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi-hypernode.com/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.10.0rc2.tar.gz (14.0 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.10.0rc2-cp37-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.7 Windows x86-64

statsmodels-0.10.0rc2-cp37-none-win32.whl (7.2 MB view details)

Uploaded CPython 3.7 Windows x86

statsmodels-0.10.0rc2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

statsmodels-0.10.0rc2-cp36-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.6 Windows x86-64

statsmodels-0.10.0rc2-cp36-none-win32.whl (7.1 MB view details)

Uploaded CPython 3.6 Windows x86

statsmodels-0.10.0rc2-cp36-cp36m-manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.6m

statsmodels-0.10.0rc2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

statsmodels-0.10.0rc2-cp35-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.5 Windows x86-64

statsmodels-0.10.0rc2-cp35-none-win32.whl (7.1 MB view details)

Uploaded CPython 3.5 Windows x86

statsmodels-0.10.0rc2-cp35-cp35m-manylinux1_i686.whl (7.6 MB view details)

Uploaded CPython 3.5m

statsmodels-0.10.0rc2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

statsmodels-0.10.0rc2-cp27-none-win_amd64.whl (7.7 MB view details)

Uploaded CPython 2.7 Windows x86-64

statsmodels-0.10.0rc2-cp27-none-win32.whl (7.3 MB view details)

Uploaded CPython 2.7 Windows x86

statsmodels-0.10.0rc2-cp27-cp27mu-manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.10.0rc2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.10.0rc2.tar.gz.

File metadata

  • Download URL: statsmodels-0.10.0rc2.tar.gz
  • Upload date:
  • Size: 14.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2.tar.gz
Algorithm Hash digest
SHA256 ce65adc8e33d3e8de64ce7d43e57f79116df8674653140559ff10ddaefa30eb4
MD5 2de4fe046cb1d3b264c5e0269e5676c7
BLAKE2b-256 09d3dbd8e32072c9fe3456abbd86c37882198383ea1f5d7285ce96a11a1da2d2

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 e1a835342b04fe8a17aab2ee8e4b1b8a19214f2f0624529aade9a8dbe5b91f4e
MD5 da38f5052b634a3d1a63d0be970d51f2
BLAKE2b-256 87e07ce1238223612122f8210de610c4c08204bee8fab08b4451aaf817843d14

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp37-none-win32.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp37-none-win32.whl
Algorithm Hash digest
SHA256 89de83099267050cc6cd780f7a6931f2e0145309bb9fa65b5028133f3dc22c14
MD5 bc1dc2f4b66e386360076a8a0af3c9da
BLAKE2b-256 bb71a65d2b494822079ffcd380de627913df0bd276af0827603c8792bb1c8c63

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 44011e20bc15ba90b5bedb7e16002c0e6d94983390d9cb3fca88c76c94879e06
MD5 fdf9906a66f3b2c7f78f657a27dd1f1b
BLAKE2b-256 80d3fc5a0ef1786cde1ae8ae94fc2f28619de8bc0306506ff9b56fd22583d676

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.0rc2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4110aa816b212fe2fdd44b2245d17d9bfafd6e1e8f6c0dd3524829ad59a21887
MD5 cff5e015454c330eb9ea858da201aefc
BLAKE2b-256 a6d5983bca2365980b05a78af7aac7b3a914fe1ae13d58b472b39e4cb306d5a2

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp36-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 beb2ef2005ceb018acb8becfe2aa1039d30c09d2058c4a752e8990cc9c864bbc
MD5 6a096c0148042802fc4faebb4d4422e7
BLAKE2b-256 0f2e0af86c354179f36f9db1533749ed81d7386dfc81b79e16217b4041da3c51

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp36-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp36-none-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp36-none-win32.whl
Algorithm Hash digest
SHA256 8ef5edc379409e6b50e31f1ff9d31425ed909c9cb09b57f4c9f21f4bd15a60d0
MD5 e2e90aca08eacbe8ff1759861ba16c50
BLAKE2b-256 de9b7c28caf38d66b7e5d8e50380449b14ad8b548df1e8f88e469351575e5fc8

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0f8913a04f037db593813d6380f68470d9c7d390f0d62370b5b4845081f21ffa
MD5 678d6547c81a379b59f1bf108d11d425
BLAKE2b-256 abf56bb191bb31574f59b42ee10278a8d002e5be4055d41f9af86d682b8c63b6

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 24752244cf5b124a599a61eb8e6fa019df3f3c8bbed18a66366870c7a694200f
MD5 be7e9cd0740c98697e26109d01743c57
BLAKE2b-256 861a9c96c967b554b3070e2765f53ec5b5a4459c5e20017f6cd14eb46f433a33

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.0rc2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2b97264e3954ab4de2ab9b76020ca99e1074c17aa7d36f86dea912812338e10c
MD5 aa489433876134b6c9d128d8a51ec3af
BLAKE2b-256 bde3822f8508a7ed1ceaa117dba38342e004b83db2d8f6c235c2612c40ca75e5

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp35-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 ef904eb5b728edc1830219555bfab129f2700ac2a1610b723a5edf10285a57a9
MD5 eb686089fe9101ac7575d8c63c6495c8
BLAKE2b-256 bb42b14ee1bfb44d7d6d1bbd51eb527b8b193e06486c1885e2f359ef8fa83aaf

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp35-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp35-none-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp35-none-win32.whl
Algorithm Hash digest
SHA256 2aaf21e6ef1de6f2aeffaa13b432f837d116c1b919cc64b018878f99c125dd2d
MD5 68bbc42a16f19132176b50069747535d
BLAKE2b-256 e048f0af058867c314864649f956e2b8c7f67d0a9662916f67dab38a021ba98b

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4c8b6ad922c2ccbbd89ae54fffa772d67696ff64d94598342c82a6953120883d
MD5 d9d1e937c20e3e8d0006399a896fdf95
BLAKE2b-256 cd1767b99a9970ca3f2a209433f6ddcaab81af56f65addb527e24e38f3de8734

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4079404d8902ca8b21045ab762e9aa41b637417210fb3edd118d9127abd1fde9
MD5 8df25cb838bc93b38a3b59966e23bdfc
BLAKE2b-256 b7c6a803f383fdcb18ca1e1917d167a9c1e5d2dab1d1c42d17fc52a69be00eb2

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.0rc2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 feefe2f7d6b59378f48cbbd0e03711379cb4dab7c889f59cbef6978f10dea117
MD5 4196cea780b6877f038aa2e98ea8838f
BLAKE2b-256 b7ebef94d669bbcef8e5d4dd6cec5f97035fde51ae5c8b4151d408e72f05b4fd

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp27-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 340b33a9ed859ebfae718f119bb7e0490a41f7d8f6cf88f9b693e30d1a56a616
MD5 81b2e2e181853b4c0249554c33549329
BLAKE2b-256 825179012e574d2c8b9bc699f4ffacbd277a49d50bd6af97a66edb7a04e448d8

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp27-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp27-none-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp27-none-win32.whl
Algorithm Hash digest
SHA256 b705cd7107fde15a81dd25da0f23995f7635e432396cac16c2c93cfa537b6f3a
MD5 94381c06d05812e29e61f1ebcd47814a
BLAKE2b-256 70e6714d7651e279f70d6b38ae6c0b199f869ae4d5e0f17b251763398d1b2890

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 40af327eb6cbea90394703d2f9d00145e68895cf9883545e9b79b607cfa34931
MD5 6405fc9695b76bde34b30431bdd622ed
BLAKE2b-256 e307a5415506d5168dc373c77ae06d76d515b9872c656a4a980ff32d7ce171c5

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.0rc2-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for statsmodels-0.10.0rc2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f85855c66e6c5ee7dcd9571ae099659affac2b2431b6e970337790662569a98d
MD5 e15a637cc7a74adf500aab296cf9bb2e
BLAKE2b-256 685f280433590cb5d91c3cff6aa63a97b83f559bc3231990bb2ef0ea3474fa83

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.0rc2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.10.0rc2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 32a5c3db4ed40153673105f29c1057f738acc79300bd769a7c3ab7241768014e
MD5 99470da979041db1bc49563686004758
BLAKE2b-256 652280c45632e7d170cf631b1cbd148387291c9454e4245119eb819b7c96115c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page