Skip to main content

Statistical computations and models for Python

Project description

Travis Build Status Azure CI Build Status Appveyor Build Status Coveralls Coverage

About Statsmodels

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi-hypernode.com/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.10.2.tar.gz (14.1 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.10.2-cp38-none-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

statsmodels-0.10.2-cp38-none-win32.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86

statsmodels-0.10.2-cp38-cp38-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.8

statsmodels-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

statsmodels-0.10.2-cp37-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.7 Windows x86-64

statsmodels-0.10.2-cp37-none-win32.whl (7.2 MB view details)

Uploaded CPython 3.7 Windows x86

statsmodels-0.10.2-cp37-cp37m-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.7m

statsmodels-0.10.2-cp37-cp37m-macosx_10_6_intel.whl (10.4 MB view details)

Uploaded CPython 3.7m macOS 10.6+ intel

statsmodels-0.10.2-cp36-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.6 Windows x86-64

statsmodels-0.10.2-cp36-none-win32.whl (7.1 MB view details)

Uploaded CPython 3.6 Windows x86

statsmodels-0.10.2-cp36-cp36m-manylinux1_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.6m

statsmodels-0.10.2-cp36-cp36m-manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.6m

statsmodels-0.10.2-cp36-cp36m-macosx_10_6_intel.whl (10.5 MB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

statsmodels-0.10.2-cp35-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.5 Windows x86-64

statsmodels-0.10.2-cp35-none-win32.whl (7.1 MB view details)

Uploaded CPython 3.5 Windows x86

statsmodels-0.10.2-cp35-cp35m-manylinux1_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.5m

statsmodels-0.10.2-cp35-cp35m-manylinux1_i686.whl (7.6 MB view details)

Uploaded CPython 3.5m

statsmodels-0.10.2-cp35-cp35m-macosx_10_6_intel.whl (10.3 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

statsmodels-0.10.2-cp27-none-win_amd64.whl (7.8 MB view details)

Uploaded CPython 2.7 Windows x86-64

statsmodels-0.10.2-cp27-none-win32.whl (7.3 MB view details)

Uploaded CPython 2.7 Windows x86

statsmodels-0.10.2-cp27-cp27mu-manylinux1_x86_64.whl (8.2 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.10.2-cp27-cp27mu-manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.10.2-cp27-cp27m-macosx_10_6_intel.whl (10.6 MB view details)

Uploaded CPython 2.7m macOS 10.6+ intel

File details

Details for the file statsmodels-0.10.2.tar.gz.

File metadata

  • Download URL: statsmodels-0.10.2.tar.gz
  • Upload date:
  • Size: 14.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2.tar.gz
Algorithm Hash digest
SHA256 9cd2194c6642a8754e85f9a6e6912cdf996bebf6ff715d3cc67f65dadfd37cc9
MD5 46c4fe9d58025c702cab5beb540e3e95
BLAKE2b-256 9c8fa28c4f3a4192ea38a6cee092aac1d52ef69dbc65461b5969a296ef5246d5

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.10.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 adb5e524be26842c867f7dfdd74d7cfb2078fe2a6159b948e2f7ccf0e3d92002
MD5 8e018ea47f9cbd48240cea37c1042d17
BLAKE2b-256 2c5b003623e7cb15c03cc3a90de4a807f05b71d9df00290e18ae92541723fb70

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp38-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp38-none-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.10.2-cp38-none-win32.whl
Algorithm Hash digest
SHA256 f9271b4ff7430f63e6c20c28afacb75e97a384fafb336fe336985da80bcd8a49
MD5 4f5ade4856182a1137a3834d1c8c0891
BLAKE2b-256 6251c1a274da256de12eaed05afb750d3ad237bff49d40d74a923bf7b43f14cd

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e3d36ff3653b50554d9ad2c95556224d1882a5db328eea8a9aa32a0eb08e4e80
MD5 6babf2fa083d9c57c896e049694c787c
BLAKE2b-256 fac6b0dd71340f91beef5f9140221c8d13e19636958b42d1e9e4c36bd0aa8f95

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b22ed234b80cd9d38988fba487da89cae484a4c2b9088b3e7783c0a937a4568
MD5 8a3c3d550986bb1b35f8b955dae5a0bb
BLAKE2b-256 ec30563917cd02bca04df43042f5c54e057122e15f52588ddfb65ce992eae37c

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 1d61edd4b73f1f4ef983007cd0d797e6cafd9e7de0125584761d93f79675cdd2
MD5 1002ee59f7bce537832db2387fd460f2
BLAKE2b-256 14dab60dea83e74e38ec8ae9e3ca10fb452157b30e261332c9852bc7a7716b05

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp37-none-win32.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp37-none-win32.whl
Algorithm Hash digest
SHA256 a8848b368838a62d06c9f0995bdc6f5e82e09f55440bd85c2c13c58777813ebc
MD5 1147c57fd40cf440239ed71e717a94fd
BLAKE2b-256 54ca164690cf65522b34634c433994d2177fdbafd07add2d8a9425a4d41d942b

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 172d947a1a8542eefe7155f73ead951f6748782846e8e97e73b8ebf6483d5820
MD5 b4ac5eeb0f353efaba0fc55eb826feae
BLAKE2b-256 a6325f8cff131e678a73b8f390ff7d8a04d502ed45e379378a0c5b9c25175239

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp37-cp37m-macosx_10_6_intel.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp37-cp37m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp37-cp37m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 c84625b8746ee7e613752334bfb9ff60dffb91d22f19b7f08b8c387776dc42c1
MD5 a1164a413d4a9ffd7a89b7bf6ee805f0
BLAKE2b-256 d64541caa30bce47d6d18f653bdd44f4ff571f192a2355f81a8fc5fec7b1690a

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp36-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 eb0589fae351e123d8dbf0a8fbfd9e9cc033622b0e9f6e81684aa692be48688d
MD5 8ebff684ea7572273db35082974808e6
BLAKE2b-256 93e7f4b1043090efa308cb3e9360091f85a37a9cd107d3e1b76b10f5f59b34f2

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp36-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp36-none-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp36-none-win32.whl
Algorithm Hash digest
SHA256 f797eada017668ca4c8c50664ff44437c461dc20233da0e12ff81327a13877fd
MD5 f7960eea1e3595c4e1bedff4909aaba2
BLAKE2b-256 40eed4d2564bd7a89e4bfe49fff90d32606be38f1a9cf29d82b83fc33642bc8c

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8954e9f1659e99a6684167432d36e25bf4e739bb3ae99709a021490f11992fed
MD5 6c84e1e051aa34dadf64e9f60afd2ec3
BLAKE2b-256 48f99f5c93b0159d89dd527ed271ca2ad71af629422d89530218c5e929c5f800

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 81c1a0a9dcc46713f47a5b69b1e7d74041ed85f774009302deedad11786beee0
MD5 ad7c088aaa07fa0ccd20825f28b35e76
BLAKE2b-256 8952b378daaf96f386e4dad2135c0d60c8a5ec5b809e2243dd4fb6af566a199e

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.6m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 ede6c56ae5d67bf068c4486f970f24b10b952d85dab0b44e7761749159a90d7f
MD5 e51e8ea3ecfe9e15e5ce4a737e38337e
BLAKE2b-256 c19eac389ccbca93a512fcb7e827afa4e5ab97dba6e32c07a87df3a9f130deef

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp35-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 be0436f7ea14c277f30e3175dd463d2a26226d8fd360d06bb1c7cd1d9bbedafc
MD5 e609bba53610af819e81741e0dbda5d7
BLAKE2b-256 a7186bbcb32cb732003ecb972d8f9a1f731a589b6b8b3b1bafe7ff198d196c92

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp35-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp35-none-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp35-none-win32.whl
Algorithm Hash digest
SHA256 938dcf95b37fdd6404e0c1f2035b51de0cfd63a63faa9048751176ea55cb4ce9
MD5 2b952486e54f6c6437a972016dc16b3c
BLAKE2b-256 5a2ffc2421ea1204b54954830495927fb25055c0c8a190d34f65857cd70526d9

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7db46146a5e773c9905d914735fabc1e7b3b1027adc98e42060ad8e61460e647
MD5 bbd0f017596d619064cba686e1ee51b6
BLAKE2b-256 4e4396ede3014f381f8c0ba8b767ffd70aa4827b8d0c6e190204ca4777c7046d

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 75d8e36693d3e7459df9d4e5e4761b0277dd1c9d028a60ef6876e8299f8b9cd7
MD5 fd6c677aa0d9db8d343bee76fe42eb13
BLAKE2b-256 cc02bb8700e4fc79d4b8aa993a8049bad02d80fb3809a9ca8f7695f44fe5b5c6

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 4d1c4b4ecdff539c7fea788f919ed25f25fdc50189a5c0b1a1a966bf04f3a2b8
MD5 22e829cc996d9602a38802ca17bb43ff
BLAKE2b-256 d2e65cca9458f8ab3c7a56f1cdc46d85ff87c7e824494cfdb65c2c9228deef46

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp27-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 a7e6d67d986ef9776b80d30fba4dca1db534986ee2023bab121d70bd78d06c49
MD5 c6c0ce4edf8950bbcbf74eff70191827
BLAKE2b-256 4cd14509d0d3643360294e41982334c697c7d22739d86e5ea0bf84a4030f2af6

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp27-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp27-none-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp27-none-win32.whl
Algorithm Hash digest
SHA256 6cb8395c820eda886721ec2e0db41ffebb2c5a090b27ef9bf51f64e9ab1486af
MD5 6e2a2ea0aa9cf22d85fd115993f6f5f7
BLAKE2b-256 9ca991df153275c55f2100542cedb15da3a0c00a3fe4a2375b52a5f876ba2b15

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9c9de647fa3ed058635e6a1b1bb2d3d2396f103cb1dcd00d5e70c36d8137639d
MD5 ad2822ccf7f715d824ac9810d84f9c69
BLAKE2b-256 f920cb596c3f5d9aa92078a2882c3e5a80a0e5b12166f3f44438b52986e8e91c

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 65f08024ef9a0bd40b63c455d02da34394658c53c16e3494dd6171e86e639f9b
MD5 9558eb4eb69060f7a78cb72edec9cc3f
BLAKE2b-256 88549d4781be117cdd399ae138d4098d06113fd071c6d5264da7b71d37ebb21b

See more details on using hashes here.

File details

Details for the file statsmodels-0.10.2-cp27-cp27m-macosx_10_6_intel.whl.

File metadata

  • Download URL: statsmodels-0.10.2-cp27-cp27m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 2.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for statsmodels-0.10.2-cp27-cp27m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 e67e244ae4ca988b40783db7e1bac0de5b7f9f91062cdc0c93e219b189700388
MD5 baa64bfe9735b6b37cdc4fb74588c538
BLAKE2b-256 ed151b9dcd6180e0f7b0f263a63a1d785f9a3f4815c5f7ee005b6ef91884adb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page