Skip to main content

Statistical computations and models for Python

Project description

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi-hypernode.com/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.13.0rc0.tar.gz (18.0 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.13.0rc0-cp39-none-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

statsmodels-0.13.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

statsmodels-0.13.0rc0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

statsmodels-0.13.0rc0-cp39-cp39-macosx_10_15_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

statsmodels-0.13.0rc0-cp38-none-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

statsmodels-0.13.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

statsmodels-0.13.0rc0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

statsmodels-0.13.0rc0-cp38-cp38-macosx_10_15_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

statsmodels-0.13.0rc0-cp37-none-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.7 Windows x86-64

statsmodels-0.13.0rc0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

statsmodels-0.13.0rc0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

statsmodels-0.13.0rc0-cp37-cp37m-macosx_10_15_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file statsmodels-0.13.0rc0.tar.gz.

File metadata

  • Download URL: statsmodels-0.13.0rc0.tar.gz
  • Upload date:
  • Size: 18.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for statsmodels-0.13.0rc0.tar.gz
Algorithm Hash digest
SHA256 5b51326abea6487e951a460de09b0df14bcbdc3e8c78d38c668b95bb173c225e
MD5 d055f217d1a17809599d6fa2bb19c6a4
BLAKE2b-256 343c0c9f75cd2e240a7702c5ca04b9db6ad1dbbbe56a6ba92fb21379901c64bc

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.0rc0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for statsmodels-0.13.0rc0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 6461da931bbd2372bd8d41278aed466dd54a2330e7307547a3e4cf608b11ecaa
MD5 26292f92e09ee87431388b582b6fecc4
BLAKE2b-256 35eff21d3f917822f1821ee142ed113d86c795b48df85b242cd013abdda982d7

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1b7eb20b1295c903461182c3f15adaef6179fa585cef7c090f890285f554819
MD5 fb8325d78975b12e738c4e17ae3ee295
BLAKE2b-256 baaf336df31bcbe558a3e9c9491367fa5cd26c15667f84935e53414b80e7ad80

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.0rc0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 512282a93e2b12509e31f72c2d2d8bf50c956170e7f8bde9355ff86cc2c10980
MD5 1f564ae0dcd4b1c0627a448965c1e6bc
BLAKE2b-256 67d3d58aa3d86f30e1479b228f3ec34069685eed0842974c235515c5be698be2

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.0rc0-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for statsmodels-0.13.0rc0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a0528f27fe6bb95b372633e8345c56b7107684320ee8c142d3fa4d8bdbd55107
MD5 1c444594cfac4d99aa02101f20662f26
BLAKE2b-256 ae766381814cf39e672535b2e0cf8fe643509e618641cf0062f72bd43328c1d8

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.0rc0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for statsmodels-0.13.0rc0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2bf36fc98fbd8bed8bf1b76e237f5b0a7423b7d8fc94cd179aeeeed3621a1af6
MD5 898390917847fd96551244023dcdf988
BLAKE2b-256 76a7a78aefc2ca8623efd594aeb62da293365b28fc912085919314a8bbbbaae9

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 123cff8d120f60ad26bb92ba5194003c4d426e8608a1906b9f958006fc33dc52
MD5 616ef7918eb19282004e1004b3e6a5d2
BLAKE2b-256 8ac5f0105d630f9d612cdf5b86181379bf4d57917ff824ea83e0c13eebe515ef

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.0rc0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a03bca12b9592194ce9dc9a99571241a5486528145deb4f4d4e87bcd1a32ebc8
MD5 009dfef57b9ca1caab99eed3e3a7b6ac
BLAKE2b-256 d83efa9f9bbe4ad796e49f25ad140f982f3c23045052c00a6cb82193486c352b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.0rc0-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for statsmodels-0.13.0rc0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b988df261a0865fcb43f4f7146102248422fad540c135efa20f0b5b1559e6476
MD5 b8da08ddf8aee19b449df92a697659c8
BLAKE2b-256 839d4617216ef7a0b8eb66f3b4707ff0280b34d623fbee98de84d40913e10332

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.13.0rc0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for statsmodels-0.13.0rc0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 4818ca056375cd08086fc23c589876e9ec75e3120677b3e9a467e9af6024fb94
MD5 538c2e0201d2588bede21e10477599c5
BLAKE2b-256 03db5f2382a230a615113994ea759053cc1768de9be25db3ce1b08ff234a4cc6

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.0rc0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e58e01f8fe7d918fdc8e638c0dca2ad8e895cc60fd414e2248fc9ebd51cf234
MD5 0f8f81eefaa77b673d0eab9af249db1d
BLAKE2b-256 c918f6ffbf668c3e79f9140f1cf405d1abe2eeda2177c678ce17d8ea9bf3cfca

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.0rc0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2dbcf999ec2390a7dc26cb80ba6875bfca0e8d44ba4c1ac6ae5e7dea938b57af
MD5 93f1016f75a47d793bc1ec45aca72d29
BLAKE2b-256 4feac61e1fed248a14b9428be6766177d6456f9e1a27ff69d6cc80d0c8cd3007

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.0rc0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.13.0rc0-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for statsmodels-0.13.0rc0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4782c0f8baabb6ae61dfbfbf7a5593e3924981059fb207b006288ada5355f252
MD5 a409cafbe1f1faaa51010db3d1febb3b
BLAKE2b-256 fa3a571202ac9d8eba1f3774a6f00ab95a996f3b7b12ef2feabaef7801a9e128

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page