Skip to main content

Statistical computations and models for Python

Project description

Statsmodels logo

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi-hypernode.com/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Getting the latest code

Installing the most recent nightly wheel

The most recent nightly wheel can be installed using pip.

python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.14.2.tar.gz (20.4 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.14.2-cp312-cp312-win_amd64.whl (9.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

statsmodels-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

statsmodels-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.2-cp312-cp312-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

statsmodels-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

statsmodels-0.14.2-cp311-cp311-win_amd64.whl (9.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

statsmodels-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

statsmodels-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.2-cp311-cp311-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

statsmodels-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

statsmodels-0.14.2-cp310-cp310-win_amd64.whl (9.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

statsmodels-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

statsmodels-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.2-cp310-cp310-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

statsmodels-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

statsmodels-0.14.2-cp39-cp39-win_amd64.whl (9.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

statsmodels-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.2-cp39-cp39-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

statsmodels-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.14.2.tar.gz.

File metadata

  • Download URL: statsmodels-0.14.2.tar.gz
  • Upload date:
  • Size: 20.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for statsmodels-0.14.2.tar.gz
Algorithm Hash digest
SHA256 890550147ad3a81cda24f0ba1a5c4021adc1601080bd00e191ae7cd6feecd6ad
MD5 b552d7a63a8525f8f3eaba050e67dc5d
BLAKE2b-256 25a34a7a240e9bc9e146fbd9f0c410ecac328a899ca0c4467c72d9b8aa1e4015

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f450fcbae214aae66bd9d2b9af48e0f8ba1cb0e8596c6ebb34e6e3f0fec6542c
MD5 ec0b7218a973f64bfd5b48411d9790b4
BLAKE2b-256 bf531e7077d1bf324c1b1055dedb72e1410d089e459a86940e25b28f545f776e

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f870d14a587ea58a3b596aa994c2ed889cc051f9e450e887d2c83656fc6a64bf
MD5 c718b681b28baad943afaa8b55c9ee0e
BLAKE2b-256 65fc4cfc2546f36c41e1d7a684b5401ed51d4f86fbd3976eafefd8e785c36658

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55d1742778400ae67acb04b50a2c7f5804182f8a874bd09ca397d69ed159a751
MD5 5efddeae4b53211916eea5cca5d7d136
BLAKE2b-256 082400c0c8dda62ea9ba93b8538f8e2760ca65d6bf92e8c20ac6edb04602a752

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ac780ad9ff552773798829a0b9c46820b0faa10e6454891f5e49a845123758ab
MD5 1828f7f4830a0c7c87fe7852ea8c239a
BLAKE2b-256 a5801b7669f6af12697316888786c97fc1405e085fc6cb0396ce5a7d2d6c8adb

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90fd2f0110b73fc3fa5a2f21c3ca99b0e22285cccf38e56b5b8fd8ce28791b0f
MD5 3d822a3c176fa8146afb2bc099e124ec
BLAKE2b-256 e7fdd282f6a0a55c5903dd66c2116589d1973a352739653382c39d70dcfd0fbc

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eb0ba1ad3627705f5ae20af6b2982f500546d43892543b36c7bca3e2f87105e7
MD5 f883dd70ac679a11ab84c4e1a4c6c98d
BLAKE2b-256 3497a4acebeb223fa827bbb16aece2b93d91bf42f88bed39d93afa96b13bce54

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8e004cfad0e46ce73fe3f3812010c746f0d4cfd48e307b45c14e9e360f3d2510
MD5 613dc3c91bb63df64ddb43130ae12ecf
BLAKE2b-256 d57e61ec96b208af273126a211a9aa1c9dfefb216725192973fc52a858ac9219

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 afbd92410e0df06f3d8c4e7c0e2e71f63f4969531f280fb66059e2ecdb6e0415
MD5 10b5785879a1a862f60f1066d5de5f28
BLAKE2b-256 bede2bb965f47c07a22afb93f68542e5a04d39b718dbb43444e2fe7344718864

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4864a1c4615c5ea5f2e3b078a75bdedc90dd9da210a37e0738e064b419eccee2
MD5 516a9fb5b55874b386c017c80c22e99e
BLAKE2b-256 7f0a28b3b3c807a518b7d0ed0ae45bfdd6be23b38a0c60790f90ce1f8383a640

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a91f6c4943de13e3ce2e20ee3b5d26d02bd42300616a421becd53756f5deb37
MD5 c9274172047f034ffea71cfe2416e4f5
BLAKE2b-256 13185730de2cbc604afcf713e984179221c797e0cc12cd62368e4966af926caa

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 876794068abfaeed41df71b7887000031ecf44fbfa6b50d53ccb12ebb4ab747a
MD5 6c953864121609aa09ff9b96d93ada5d
BLAKE2b-256 fbb1b16836310f6ca89ddfb30fe65f8851c1a8d63152190ed740a236eca15012

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 50fcb633987779e795142f51ba49fb27648d46e8a1382b32ebe8e503aaabaa9e
MD5 cb28d116b38627870b974b5191cdd7a2
BLAKE2b-256 08707c79a485086f0dac0dfbda0212e8c868f0e1136e1d78721d643885d40674

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0e46e9d59293c1af4cc1f4e5248f17e7e7bc596bfce44d327c789ac27f09111b
MD5 8c5f8db4b2ae4ed0c517ce606d7f658c
BLAKE2b-256 92979864056a980513d7be53cf98f0fc476501b70bae4a1321bf46b0668f9c0c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c254c66142f1167b4c7d031cf8db55294cc62ff3280e090fc45bd10a7f5fd029
MD5 43f2f1ddf4d584ebc9bb78a608c1972f
BLAKE2b-256 5546531a3d175278cb2b2dcdae85fddb2facb59a05051c92dc6e61e425890a6c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10f2b7611a61adb7d596a6d239abdf1a4d5492b931b00d5ed23d32844d40e48e
MD5 954170f657357de34a2707c3afe6e6a7
BLAKE2b-256 9f062f1d2ba024c802e812fe9e85eebc06871d76f1f4e0bb2beb0faa22cbe330

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5827a12e3ede2b98a784476d61d6bec43011fedb64aa815f2098e0573bece257
MD5 cdb65d75f8b37c953ae9d02e2044e2a0
BLAKE2b-256 b0ca828c82dc0252b048f994d6a7a2fcf8380d976978056b2c31f0e045582128

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a87ef21fadb445b650f327340dde703f13aec1540f3d497afb66324499dea97a
MD5 e45bdc85cf061ffcf835a6563a441c71
BLAKE2b-256 139012e9e6bc54a72d305749948ed9e94010ed044c814d2bb333612778a16818

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df5d6f95c46f0341da6c79ee7617e025bf2b371e190a8e60af1ae9cabbdb7a97
MD5 e3075cf8c3f2f55d554e8af3e5c8c7e5
BLAKE2b-256 f749a62b5f00d49d78bec0e2bd90c89718f0d376ab6fa868e2d4aa6a7a055cae

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8875823bdd41806dc853333cc4e1b7ef9481bad2380a999e66ea42382cf2178d
MD5 b261366af1e20048af2d3e710286a427
BLAKE2b-256 4ec3581ee14c0a672bec7978aeab37af3b76529f25d4573362fe235e88ac02be

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f36494df7c03d63168fccee5038a62f469469ed6a4dd6eaeb9338abedcd0d5f5
MD5 265ba541e5c864002864e65ecf5158e2
BLAKE2b-256 e7544c8086e90a54b8e57ac8ad63fc38eea20aa6507fb975efdb6c72210744c9

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 29c78a7601fdae1aa32104c5ebff2e0b72c26f33e870e2f94ab1bcfd927ece9b
MD5 f9f06025e613d6ff17eef4b0b1ea86aa
BLAKE2b-256 31642aeff4faad7c9f2958fced82af0c160c4df78ac5229901b561d20aefbf40

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9edefa4ce08e40bc1d67d2f79bc686ee5e238e801312b5a029ee7786448c389a
MD5 02ed81d167263d7e5cc5b4653714dee3
BLAKE2b-256 6c03aa155b7f07f84282918c64c711479d4c1ae2e7b9ba472e740afde8c360c3

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 201c3d00929c4a67cda1fe05b098c8dcf1b1eeefa88e80a8f963a844801ed59f
MD5 8d8ae85757f7452d7798898ca4e2d1c0
BLAKE2b-256 f488f05a981e4c96bac9c9a69460c50fceef0b3324cf120e9a1ba6c01c62bf84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page