Skip to main content

Statistical computations and models for use with SciPy

Project description

What Statsmodels is

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Main Features

  • linear regression models: Generalized least squares (including weighted least squares and least squares with autoregressive errors), ordinary least squares.

  • glm: Generalized linear models with support for all of the one-parameter exponential family distributions.

  • discrete: regression with discrete dependent variables, including Logit, Probit, MNLogit, Poisson, based on maximum likelihood estimators

  • rlm: Robust linear models with support for several M-estimators.

  • tsa: models for time series analysis - univariate time series analysis: AR, ARIMA - vector autoregressive models, VAR and structural VAR - descriptive statistics and process models for time series analysis

  • nonparametric : (Univariate) kernel density estimators

  • datasets: Datasets to be distributed and used for examples and in testing.

  • stats: a wide range of statistical tests - diagnostics and specification tests - goodness-of-fit and normality tests - functions for multiple testing - various additional statistical tests

  • iolib - Tools for reading Stata .dta files into numpy arrays. - printing table output to ascii, latex, and html

  • miscellaneous models

  • sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered “production ready”. This covers among others Mixed (repeated measures) Models, GARCH models, general method of moments (GMM) estimators, kernel regression, various extensions to scipy.stats.distributions, panel data models, generalized additive models and information theoretic measures.

Where to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

http://pypi.python.org/pypi/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Development snapshots are also avaiable in Anaconda

conda install -c https://conda.binstar.org/statsmodels statsmodels

Installation from sources

See INSTALL.txt for requirements or see the documentation

http://statsmodels.sf.net/devel/install.html

License

Modified BSD (3-clause)

Documentation

The official documentation is hosted on SourceForge

http://statsmodels.sf.net/

Windows Help

The source distribution for Windows includes a htmlhelp file (statsmodels.chm). This can be opened from the python interpreter

>>> import statsmodels.api as sm
>>> sm.open_help()

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

statsmodels-0.6.0-rc2.zip (7.3 MB view details)

Uploaded Source

statsmodels-0.6.0-rc2.tar.gz (6.9 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.6.0-rc2.win-amd64-py3.4.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.0-rc2.win-amd64-py3.2.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.0-rc2.win-amd64-py2.7.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.0-rc2.win-amd64-py2.6.exe (4.0 MB view details)

Uploaded Source

statsmodels-0.6.0-rc2.win32-py3.4.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.0-rc2.win32-py3.2.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.0-rc2.win32-py2.7.exe (3.9 MB view details)

Uploaded Source

statsmodels-0.6.0-rc2.win32-py2.6.exe (3.9 MB view details)

Uploaded Source

File details

Details for the file statsmodels-0.6.0-rc2.zip.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.zip
Algorithm Hash digest
SHA256 4ccacffec91840adc03012a212ca5d671beeebf23e0ddb8dac99c4b2a8a0f7b8
MD5 854e9bc6c9fa68f90ac2d82caa74d7dc
BLAKE2b-256 b703f4fa92a26ddd99f25611e362492cf5ed7c1ea5feec9f53d7b5604e904532

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.tar.gz.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.tar.gz
Algorithm Hash digest
SHA256 bf149ccd78bd0122eafe5123c78950ab144fabba9f605ebcb85c7c3f34fe1842
MD5 ef45c3dd2f7500a41c0394ae4ad02f4d
BLAKE2b-256 08d2ef8932b605a0491639bfcc26675ea8b220c13f3eb901958993b04a587819

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 c72d8f918a5b616c377ec9a4e6f9009b2d9923045f0f2498dec50d495409ed5e
MD5 c707713badf4d090e96618f08f70602d
BLAKE2b-256 012ef38331e7eb97de6376b133bd59e989d2a21ceeef86c4bad448adc09f698b

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.win-amd64-py3.2.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.win-amd64-py3.2.exe
Algorithm Hash digest
SHA256 ae54b624b8f70dff4910e0d9b5d93918721a985f2d2329f6ad56f647c5b1d1c8
MD5 e287e066d6b61258330e853872858824
BLAKE2b-256 91d17ae97d00f042410c9cbd3dcb3b78e2bb166d6b696bdf2e5dc9381c8fa2c5

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 2b49df1a95cefd5f6ea6f86d3b14891e2a7739313697f0092c5553bd2b73c9ea
MD5 57e69b06c24d5177698167bc2ace7441
BLAKE2b-256 3ac82197fb085d53a4c3743099bf3a9c2d55588a12d6bbd43e2a91e74d8ad8bb

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.win-amd64-py2.6.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.win-amd64-py2.6.exe
Algorithm Hash digest
SHA256 082fe11588e20f18be2ed022d2520b616897e11143a5fcfbd400a8f5e6c02dc0
MD5 ec4f2fc55c2e99a7766242baa2b98d24
BLAKE2b-256 fbfb4014f7a87ef986995d6b65f8d3b12d8df5476d48d4eae9b1de63e5cf48f1

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.win32-py3.4.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.win32-py3.4.exe
Algorithm Hash digest
SHA256 6ccb8c305f7e77b81dbda20d6b1802d627bd8e28f01993cb23b7628776362c32
MD5 938c35bdf9ab7aea7be2cd335bb15373
BLAKE2b-256 218bdd34c3999c9d638c8887bea583e78c1e9da16e5a86c8163ff4c9e3e778cb

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.win32-py3.2.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.win32-py3.2.exe
Algorithm Hash digest
SHA256 dc71fc4d8f4ab958a169431d131eb5ae47456ccb64017bec7aaaad8e435af0ab
MD5 4988e17358b8cf53d100059cd2c5e2d5
BLAKE2b-256 6400a59d710fef1e0fabfb88d6c4573245c2b5f2b516f2effb77a7595113716d

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.win32-py2.7.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.win32-py2.7.exe
Algorithm Hash digest
SHA256 b40c00c4a10913c8160af8d8cb63075f577ae7053642f098910ed6ce89cf4892
MD5 a4e67c01e7816d170f3dd969556dfcc4
BLAKE2b-256 1a0e4dcf3747cc3f7f29ccd177d51fe418646f0ea2a940e46d28edce38c6ff78

See more details on using hashes here.

File details

Details for the file statsmodels-0.6.0-rc2.win32-py2.6.exe.

File metadata

File hashes

Hashes for statsmodels-0.6.0-rc2.win32-py2.6.exe
Algorithm Hash digest
SHA256 126b6fa457223f597ac65399dff8ac6bc50e797f06d91ab3fbfe365d25cd6f90
MD5 f15b90e86f1eb9a9ac18dd285d03eb9c
BLAKE2b-256 b58d69e4d854a749d9cb5a3b56b06970e5fd7801466c37bb42c9ca4de0ce9297

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page