Skip to main content

Statistical computations and models for Python

Project description

Travis Build Status Appveyor Build Status Coveralls Coverage

About Statsmodels

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

http://www.statsmodels.org/stable/

The documentation for the development version is at

http://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

http://www.statsmodels.org/stable/release/version0.8.html

Backups of documentation are available at http://statsmodels.github.io/stable/ and http://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson regression

    • Negative Binomial regression

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Nonparametric statistics: (Univariate) kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE and regression on order statistic

  • Mediation analysis

  • Principal Component Analysis with missing data

  • I/O

    • Tools for reading Stata .dta files into numpy arrays.

    • Table output to ASCII, LaTeX, and HTML

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

http://pypi.python.org/pypi/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Development snapshots are also available in Anaconda (infrequently updated)

conda install -c https://conda.binstar.org/statsmodels statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

http://statsmodels.github.io/dev/install.html

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.8.0.tar.gz (9.5 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.8.0-cp36-cp36m-manylinux1_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.6m

statsmodels-0.8.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

statsmodels-0.8.0-cp35-cp35m-manylinux1_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.5m

statsmodels-0.8.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

statsmodels-0.8.0-cp34-cp34m-manylinux1_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.4m

statsmodels-0.8.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

statsmodels-0.8.0-cp27-cp27mu-manylinux1_x86_64.whl (6.2 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.8.0-cp27-cp27m-manylinux1_x86_64.whl (6.2 MB view details)

Uploaded CPython 2.7m

statsmodels-0.8.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.4 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.8.0.tar.gz.

File metadata

File hashes

Hashes for statsmodels-0.8.0.tar.gz
Algorithm Hash digest
SHA256 26431ab706fbae896db7870a0892743bfbb9f5c83231644692166a31d2d86048
MD5 b3e5911cc9b00b71228d5d39a880bba0
BLAKE2b-256 7216d7e7a70fc8ca3cc0d783a66e902a7adf80a810695c357cd48bb22c82451a

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2fee3cc853fede203b2a632ef89f89f13f860b98939f024f31e3183ee50baf10
MD5 06d3df8e0c0215358c91f149a62f4605
BLAKE2b-256 0de970d80b48c8c52a8de3ec7cd50e2aa2b1f3cf3f95e42b15fdcb59bd7189f3

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8d39f25cd7d8d4360f1e1726029a4917285f1dafb476c47bb36c3c1ee8c8f392
MD5 001b40cd44a8182f2e9026d9b179faaf
BLAKE2b-256 8cc983aa867c2ef076e9bbaa0ffc3339d73cd47221c6d2a2d2498cb32c8a2458

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 51cb8689d0290d91f60ff3a1db34bd64a63f8d68d8b386012ee38e597ecc0a31
MD5 683c5b95cabf60b11f9afe5a91aca3ca
BLAKE2b-256 ea43ebd8a880fc3153e8f926d0749d26eca674401c986c76f99b0a248996da35

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b9426bcc7f47b7d77ff5df66ca69d1ec7d9b7aaaf89662a5e6abceb6336adecd
MD5 cf1e99155dc657280ce0203b936ffb70
BLAKE2b-256 abea6ac8d3b2ba4f75dcfca5545d8f43df7a5d347720b2e41749fb617e7c4bf2

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 01b6aee5ca88a6e5fb56184c5ea19c96ea3ad805bd564beba093fffb19f9766f
MD5 1542ac8d3f20d4c79dab7a21a323e7a2
BLAKE2b-256 2db8678b8df4e542d488cc6be5e7bd4ad288237f59b6537ba3bd063f5402bea5

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0a2db2f5b7d3983f349b4b8f50a734d2d80ee194587f8c7a2d4fbec89fc94218
MD5 21f6bb2d7a3d3d3d5f77ccd5f74037f7
BLAKE2b-256 66b29cfb3617e0a844463a03f7f1d757ba2dcf08e23aa48b7830cccb1a9cf111

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e363b368bdcbd528270408dec3ac0558240774c2c0a71feb9cf2f774d4967fee
MD5 26df933702f712a04eab9d3de9216dff
BLAKE2b-256 a22a0bb4e9e0e0f2bedde21602a2ac89164fa40814b1d3d16c1a7918e81977e9

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6834eb063c5ff4803bbe61388a95c7c984cbcb8d11d1db0b85f50c772d4af9fb
MD5 82e2eba8cf43c52a6f9372fd62c280cf
BLAKE2b-256 04812a285f5e0ac22d793eb309ab8b4ced19a9f8c0011151aa5176726cfb59f7

See more details on using hashes here.

File details

Details for the file statsmodels-0.8.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.8.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5f94bf04a4ffe5e60f0648635506de0bd9d2041d8c30f72ddb272e214c2b8b24
MD5 da714d2a3a4056f6bf97cdd116c04c81
BLAKE2b-256 5b2a221aab199405697ea0c94eb1c8693f5b4b854d591e826dc6ff306c0c7153

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page