Skip to main content

A package for the ingestion of 4D STEM data.

Project description

A package for the ingestion of 4D STEM data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

stempy-3.3.16-cp312-cp312-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

stempy-3.3.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

stempy-3.3.16-cp312-cp312-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

stempy-3.3.16-cp312-cp312-macosx_10_13_x86_64.whl (875.4 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

stempy-3.3.16-cp311-cp311-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

stempy-3.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stempy-3.3.16-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

stempy-3.3.16-cp311-cp311-macosx_10_9_x86_64.whl (879.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

stempy-3.3.16-cp310-cp310-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

stempy-3.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stempy-3.3.16-cp310-cp310-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

stempy-3.3.16-cp310-cp310-macosx_10_9_x86_64.whl (873.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stempy-3.3.16-cp39-cp39-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

stempy-3.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stempy-3.3.16-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

stempy-3.3.16-cp39-cp39-macosx_10_9_x86_64.whl (874.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stempy-3.3.16-cp38-cp38-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

stempy-3.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stempy-3.3.16-cp38-cp38-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

stempy-3.3.16-cp38-cp38-macosx_10_9_x86_64.whl (873.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stempy-3.3.16-cp37-cp37m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

stempy-3.3.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stempy-3.3.16-cp37-cp37m-macosx_10_9_x86_64.whl (872.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file stempy-3.3.16-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: stempy-3.3.16-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for stempy-3.3.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8b3a9f37b07d4531d3b158885555c06b74bb605b26106f6c9ff2ed00cccfc2c0
MD5 2d04e3125349f5b56833fd4bb4261bc7
BLAKE2b-256 f6b684a0ec8a396b4a5369e2ce20fc5d02a98b383df7116a40ec581682e0873e

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 774ec6798eb752ae06ab358be3a29aec55a57034998bc10ef264e882a40d71c3
MD5 78eec2936a9076f337b461893f7d4d26
BLAKE2b-256 51d39f64c1c95f352e9aed313f5d1278f2f542fa2bf58bb671fc85ec74789f0e

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19986463425d8b87b0c7b99a46a3cf53921bb6832bd86b5ca7c4a6bb07acfb33
MD5 227f394811f8af087ed209e769c5c637
BLAKE2b-256 2fcdc53b58437c35ca122caea09a20514994693fb94e7e20cbc559f38a8a0572

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9508a128ca1ec66a22869345653a4fee18557441087b96df522320a50362a629
MD5 be1a54ad1074cec20aa1240769b03d54
BLAKE2b-256 f1ddea987e6fb655beb7b3e7d2c854be5833856c5b001a5ca260167975fe0f00

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stempy-3.3.16-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for stempy-3.3.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bfb2432ce985792a30b926868d0542a0db688f9dd520a1b3de425853c46a4822
MD5 ac19d0dc8902747f844c3461fb2481cd
BLAKE2b-256 36e86a1b4613e9492a76b0d12aa4e289152996195b0303c53b25e2ccd232b4ee

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7428aab7c17a41502997188ccac0a92ff36caaffd977641e74180eb0b93288e4
MD5 23b071275d1c3d7b6f1beb24e621b4c9
BLAKE2b-256 e6626270aec1a26224cea318cc43a2e0f31614994db377b45c7b383adb409548

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e93287cbbcaa6e5b2854fa2d0b6d81931087f35ca02d39e87b61ef0fddf0eac
MD5 12b1dda96ebd40463dcdcbe3d3767a14
BLAKE2b-256 14b0a59fa459b446432b85c3abe2a0146b2f509523d90cc0e633c0ee2634b328

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1da07eda31db12a34de5fd590ad158035afcc9c360b5da813cd790b72a20027c
MD5 1f62a9378c21ff64c99c76eeda8734c1
BLAKE2b-256 06d21545005eb89b443aa37e0da39d51dd457695247e00346032925d8b2b619d

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stempy-3.3.16-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for stempy-3.3.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9d8193b4aaf6d0bf8cd681bd8848cf8b555846bdc3dfa5d845757c1368acf047
MD5 a46d7c1b9b3409ee17021580ed4db39d
BLAKE2b-256 5cb1f1eafbcc228db043e8541e1b76cd2cf738bb76710a8fac8dc8a4284d6aef

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1973b7a461163a99c11dd5bc025149642947cd58a9a62abbb303fa8d5ee2b865
MD5 fbb522128394634d12db887b4af6fb73
BLAKE2b-256 a9e6412a401cc8ad8b3772280f2107ca32375970a9ad923084b966adf743c8db

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 836c5d61a5304509962bdec62af33b72049d9d0e3a380159f356a4e38b7d29d1
MD5 cfe714982d3ab4c558fb88f14b151709
BLAKE2b-256 2a13640061b323194bb083782a7e0a00542e34aa18b087395cc2cf60a41c1473

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f91c1aee326bcd6f38eef12e78f0cbab106d8057153064149af97f84f5b0f18d
MD5 676c65f342c57252c45b8fbfcd07de27
BLAKE2b-256 ac429469a12e2c9a639461df7ae492b67c8d30dd32d3bf93e7628de1f24d0f10

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stempy-3.3.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for stempy-3.3.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b6a89f4b285887bb869d24859364cd763b2c4b1ca825b6ae7719179b37e7517c
MD5 4b9413f5d03d29963ca8bdbd4cf6ad81
BLAKE2b-256 5977d9e9ff931a615d5fd52ff26acbedcc1cd0ad44d8ae8b9b574a51e91b71d0

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3bfbec8b83b7dddcc47291778978de7ec8a3af6a20fd66652048aff9150ecb2
MD5 90f4e208ffbaab5912b5883ceeec9358
BLAKE2b-256 df58bc7492b2b1de693e51fb1567fcbad21d7b54c0c70073a46c3eb592b85d8c

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d768b4da6d44f5b84cc4f89f871a25b0fad2cf932d6fff126005313d63103c18
MD5 3cadad7cdc67e7cdb34579ed7b8b9532
BLAKE2b-256 0fab85ecb550c847baf672c5f68b82f4ec0ea687527485d07a228ff2a667719b

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ffd9b361d9d4e1784ab7e1ff3995a9aa573b01f77087bf700dd77a8e65b01ee
MD5 557c523946594617118d19c6e5b5389d
BLAKE2b-256 902cca36960c6508af1f3395b72e8d71b5c9494b29600478c57d51767cd9d1f6

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stempy-3.3.16-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for stempy-3.3.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4fc4ba57717935583ee2bcf2d16d2e0967337301d17f01a3d7387a98163ab2db
MD5 c53238465568433af4ef67ae540488d3
BLAKE2b-256 a4f4596d469aa86695a6e86059ae409d9dfde90ca1eebd2ee177c6520bc1df99

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 248d26354d77a713dbac363b3e240cff47e7d2ee312a36a8149044a05ef9f5f6
MD5 034506a8bcf02d1cce7a7f6c2d81518d
BLAKE2b-256 096c13dd270d87b37d872f6ae59527701a4a324e3fdbfd00b2c32829516ca3ea

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f35baa6312b76bb86b5463b1959a62a7487db268b84cbf0285f41d7c92b559d3
MD5 26ab5b817d623c5eb7ca1aa484a8d0fe
BLAKE2b-256 e9a97ec25be86b0741494cb097b5e4e6066a816084d4e53a10452ee652278d70

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e8c48bfb1a4f33d0c942696202945c6ee2a344dd19944adb027178b6889415c
MD5 737678bc6f788adce315531296e5e2e3
BLAKE2b-256 64dc3cbca39ca2c2a089ad27655a01cae4052a8e2530e6a0684ee116784affa6

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stempy-3.3.16-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for stempy-3.3.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7b3379e2ba4ad26096889a61d5176234593a8ceeda50f936287e22f3f764f09e
MD5 c67d6ab52f184ea960e5c2403a2c5ebe
BLAKE2b-256 cb1fbbdbc5979eadfcbb657041de22e26dcebc2cce07ece5ddf2866c75123f7f

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98e697176517b39217eb4e43471f3564b189d514cb7c5a7d4cf40d282d968143
MD5 b3870320d1ba7c2e2e77146074bd90f9
BLAKE2b-256 12980da1db6b4c1db543fb49c1f56f98a574ff4873b440885b0080c1e7397d22

See more details on using hashes here.

File details

Details for the file stempy-3.3.16-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stempy-3.3.16-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1526692ffba84fb741f9372cffbe0ca7169f11bf6287ddd350872fa591c79247
MD5 d4073e79828d9ab4c1e3a9a74c66df87
BLAKE2b-256 925544c15ea7dead0c33a1ddcced163d1877cd0557ae272bd3bcdcb168a05c6e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page