Skip to main content

A fast library for analyzing with quantum stabilizer circuits.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append("H", [0])
for k in range(1, 30):
    c.append("CNOT", [0, k])
c.append("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.10.0.tar.gz (535.6 kB view details)

Uploaded Source

Built Distributions

stim-1.10.0-cp311-cp311-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

stim-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stim-1.10.0-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

stim-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

stim-1.10.0-cp310-cp310-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.10.0-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

stim-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.10.0-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.10.0-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

stim-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.10.0-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.10.0-cp38-cp38-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

stim-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.10.0-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.10.0-cp37-cp37m-win32.whl (2.3 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.10.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.10.0-cp36-cp36m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.10.0-cp36-cp36m-win32.whl (2.5 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.10.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (4.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.10.0-cp36-cp36m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.10.0.tar.gz.

File metadata

  • Download URL: stim-1.10.0.tar.gz
  • Upload date:
  • Size: 535.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0.tar.gz
Algorithm Hash digest
SHA256 4fe43bdd01500eee6d3094f5550ce288fea8087499375f5997c3d5ff535f92d4
MD5 4808accf5fd7bacc3f5c4c734d76e76d
BLAKE2b-256 90efcc802204e340c7314c821c5464efa69beabbbe64810a0736278aeae88b72

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stim-1.10.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 93b4a4303a4bbbbd22f6392a1d53689ac1b91847b97a881683746357f265119c
MD5 e2b95a2d9839c547d0d759976a43055c
BLAKE2b-256 b9e6557270c8b020540684508b2f81c7591f9bfaf8dd6194b7fbb93ee9957b9d

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 784415a54c4fef486b8462b6b02b1d0bc9be735e09b6935f493905dff7cdcdb7
MD5 08ccc213ea65bdd2a4f78569675d57f9
BLAKE2b-256 53f96d10949e86ec3b89a6cada2a182f15783525fb4fd0b8b3b02f8aecc6d22a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a01ec9e73334dae1f7723e5a6ba21eb66d5f2a75e9e6a212a5edee9bd440d69
MD5 dc0e1fd867ceb751eaf7f0e3640c9931
BLAKE2b-256 45e6bf76e174ab77191b37588da632349c1a817a9974196e54a3176aa4765e00

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfece7bd787ec7d09c65e6e5c085833ea9ff4eff03c507d437e5c3e7a8d7af5e
MD5 a05b5e4fa6a8049c16211830bf548e8a
BLAKE2b-256 d43dfda50f079d275755c0945b6fa384c38be595f6f413f5ad75b3752798e623

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.10.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bd4ebd38a1f0ae6553a3dce3103fcd4b61d7fb6872d6bb60b19780da9b852d57
MD5 c8c00abd2a1eebacdfc9270327dda3d2
BLAKE2b-256 88f13f8ed88d56d1ae257cffd40d2193aff5d51d48fa738888a1b7c5a0f62899

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3681227aebaaadc3b3631320b17197db6b95cfe71c2aed244214c7281456c33
MD5 7f15f381766cc79609d5d855db9b8374
BLAKE2b-256 ab86e81b0bfc3f5b199d72e9d42691d12e7a80949328eb82818bd89ad469a59a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62f4b5913e652e4a420cb4b8f3092fb95df6d608a90559510f7235a49dfccba7
MD5 d6186c500b9efa092cd0ebfc07bc659f
BLAKE2b-256 72ba5bf61362d988914ede09fa45d2adf06dabe55d39f0938807ab68400f5357

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e4dfedfbaf3ad85413d17e406dbc604b22af861b73697c0821ccf6a8500c8fec
MD5 1df53bc0bd73e7dd93e6c174b6a4b65f
BLAKE2b-256 e1ddec8e81b4410508fb952904e54f1c4ab46f3470fc69ebf222cfede91856ee

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c11c41a54fa646dfbe34fe00e413a2e6d292f4b31d59b037bdb0d32f55984ab5
MD5 be2084554070f71e25bd02550f6a5a5a
BLAKE2b-256 436c395c116d2cf4e31774746c37fafe8171e0352a2a2ce60bf1b442482eb30a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 597f4afea9f35e4b9ffa579f9cb81a48529a035d41540e90648271fbc15f4bb2
MD5 66202124f1c59f141d31c3e88c557636
BLAKE2b-256 9ca9063ada9bbbd17e01d73d0a138a08dd5020175e6b82e481730b2775248ec5

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f860d6fd883c4aae2c5400b08c076d128495566977c204328785217f177f1481
MD5 6aa861d2ab31074084b40500ef06f191
BLAKE2b-256 97d07c42916a721e19ddf332f0812b29f28c199113a5f7d65df2c3ecf9e8ddb9

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd6d023339ae7075ccc9d8a280a37ae657e3e2d7b899faace390727800eb4771
MD5 7240c4cd5ad896e67b9be2638d8e32ff
BLAKE2b-256 27818ed9cc874087b32b0389814be5dc92c226cd15512c4657a06d9c714a78e2

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c2cada958d87f8f8bc51a6296c8e9a6ea559efa7bea9389e24b2074a4d9004fe
MD5 c9377b5c033d00a5a62f59184a3e9e05
BLAKE2b-256 31b7851400163feb9af485da2a4fd42642a1d43cd2395d628f3907fe986804fd

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b9c1efe04f6a736a0d87984ea8961f2d0f6769df60ffa56bc1cc251790cd8de
MD5 855199033ef1a6310f80c2a4c79cfdb2
BLAKE2b-256 cd1441a088b688428a4bbe74923bbc0bf804b7ff16c0f29e4e806aa05f6d3962

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f942b62a0d35a8b55da450e272731b35edd3556314d441365d89573ec0331c4
MD5 d6b8fd5473e652b9a0e8d2483f721d82
BLAKE2b-256 1eecc691c716cd8fb164eba7387cbe9de6ddc0d09830652ccfedaac02a7b249c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3d9ba3d17545887575c46a8c41038cc5bad242497b7bb2498c7f389af979165
MD5 da22ef96998023eca1e9837814825356
BLAKE2b-256 870151049a2757dae53bd8cc0d1abf62d2ab8907c32bd50b2617799c1e4a3db5

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 27b6004acff82e4a83d98be215ebc6fd533166b4f6d1e8bb80ca9c6f2589f997
MD5 3031013fcb3b03e488e391c62f1e8602
BLAKE2b-256 c6897ab77cb0e07c0dce0707c766be57477a19288c564a51f3ca10a43b451354

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.10.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 33f55aacd6645d77c42cedc0f1146e8441353d10467035e44b22391d8aac7147
MD5 868a6ac9e196e8ab53d1fe08b1348292
BLAKE2b-256 0e873ab8a2b2fe84ba3d724e6575061a5abc0b72480a2e48843dc347475b8700

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa3272ca6efd77ae1a502a623fc0842d95716ad9792bb37dfa5506e74267d1a7
MD5 3aa983f5611c807450e2029988374b0b
BLAKE2b-256 aeb60bcd329e0deca4c22229b6f2e418efa432d631aee36dc0a233c3d97be9fc

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 584483b4f50f1e63599fefb6b23c8e09914c2dee90c6e40f6e677e7d33ab1803
MD5 87ad6bc895011c6ca9bff3d8537e8e15
BLAKE2b-256 b5fb0bf11a00a5addb31b921952a2d0e595f47bea538cc856edbf442a0d82c62

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29bb0836e47702e02fbf70e5ca401d79f0c8e38b6a22eeeb421ff58942d85327
MD5 952fee411c2018ec5d26d50e21401c05
BLAKE2b-256 d1ea04a3acd3d5fb1f56acb2042f776a2832a122be0d1dac07e45cde1080fedc

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.10.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 302f2684749a2772324f4eda9ac1a6c1358a1edeec26abba39db9f515918e726
MD5 f96b6d5c0c4c9e82da9b945b55fabe7b
BLAKE2b-256 7d5fa585dc0dd341abf6cf4fdeedeb9b26d3990e6b435171f9d12b00b29a4789

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.10.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for stim-1.10.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f403d598127b527e5f3570f0f1404939a589013e18b66d184f4a8d5e6bd5ef6e
MD5 2e31ddb29bcb4563a2401c8c3b45dce1
BLAKE2b-256 4f2e2b1978871b8e159b0f30893b3fbf43c32f0506401f3ff66d4bbe400929de

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d561179173b3378e7a4a21e0dff4d409e533c80f1e557a5d557d2bdc4ef3cab
MD5 81f911ddb66ae42d3a2de22063abb1ad
BLAKE2b-256 06c0812f23bb672b4ad4e8b4525a53f109a56953c410188f4f26acf0e207466c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8c63157aa1ae92e7c03fc0b05c57a3b7c9fe81e2c9e1d174ee09def93ecb98b5
MD5 748fbef60bf78d7780b3a500d20d1f58
BLAKE2b-256 cbf7b9c2761f4c52796211bfb2fd60106eac5fec99562fbe04d15a5fa7ebdc41

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.10.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.10.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0e54a7c1c8ab9e0df705351f93f42c09959c31b0f89d584bc93fe5d2a6f979f8
MD5 ba6098b806073f91b09a39c7ea81c7f6
BLAKE2b-256 fda20504fbc4a19551e6d1daf1e5ff5b3dec293e0f58d383053b3e5784c2857d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page