Skip to main content

A fast library for analyzing with quantum stabilizer circuits.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append("H", [0])
for k in range(1, 30):
    c.append("CNOT", [0, k])
c.append("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.11.0.tar.gz (585.2 kB view details)

Uploaded Source

Built Distributions

stim-1.11.0-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

stim-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stim-1.11.0-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

stim-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

stim-1.11.0-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.11.0-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

stim-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.11.0-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.11.0-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

stim-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.11.0-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.11.0-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

stim-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.11.0-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.11.0-cp37-cp37m-win32.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.11.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.11.0-cp36-cp36m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.11.0-cp36-cp36m-win32.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.11.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.11.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.11.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.11.0.tar.gz.

File metadata

  • Download URL: stim-1.11.0.tar.gz
  • Upload date:
  • Size: 585.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0.tar.gz
Algorithm Hash digest
SHA256 9768d801aa45cf38ba8a6a68e90a970273c0a83cd85ff20bf7a70f90c5152122
MD5 8cecffe9d934b8c12791c347f875ad11
BLAKE2b-256 76c39e483f6bcbf6f0ebb8d20e9aa1ff3d3163e7dd1d2adeb7ab64a413e6f1de

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stim-1.11.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b10f293ffa6f72c82c07337afbe1734e1bc1d5a50598544075785473d0086101
MD5 a4b90e1389bfe93e0c16ec08a041d133
BLAKE2b-256 4094228d0549e403ab889b5ef48527f64b0c92d8686720a87121983786a55758

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29d97827fd0d64d7046b94e6ebe2bbf5ea2ac7dd48746574f3c0be79f88dcb7f
MD5 5cec5f899d73e6056bea466dff094f7e
BLAKE2b-256 158d0973ec8b89ed866c373d5dde40b84916b9a5b01827ec88d6e040e783613f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 82146c1a46e26e98fec2615ecd9271b5bc5d0fd0aa9f5f310fe56d2073b5603b
MD5 a8d2ae13736a1015c4279ccf22a197e6
BLAKE2b-256 9885e6009ac55e58a99e362545ade5a869a4cc7516b3edd8bc56b65e86e8eb66

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c9738c78395adb27fec541908f903fd62a9b7e3b52fe36d82929f1a5e393ead
MD5 332a1cae7620ba0cd98a0afd3fceb3fb
BLAKE2b-256 507fa4893db12e252851bb39b15808d8fb42a96cd0bd6da291e66a257c327336

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.11.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5673e085d7b0c0b1f51e8dc4f93a82756183b638de8afcbbc368c161f23da543
MD5 978ffdcb02f077efd509428aada2489c
BLAKE2b-256 6fb11ca1d8a72713721a62ba657b9c292d083d0c0f99fe098dfc74520a2ed3a8

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c01660da8f6538571bb44f084d5f61e764fe4cdd35304c7f16a93626f472a19
MD5 c26adc5958869c4857db7263c66e5b42
BLAKE2b-256 2882a430c64fe16027798e4a947fb528ce874dbb0a5874ea41820de0d79bd9dc

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f83924b558391da2311f54dcd56a7eb73f2afe327c4cd74a44e1351845a7f51c
MD5 12fd74f0c4055bdd0aa7682f7101e219
BLAKE2b-256 69266cd649a3af2d2a62bbf988ea07f0acae04b5f2c9b344a53f1b9698c66b47

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ade69d52685c21b87f74ff22f774e462098a80ab81104a79cc55aa8f08d34b08
MD5 0c1c28ea81c43fbf3a837b8cfe52efd0
BLAKE2b-256 90d939dd3f92268d907ce00ba6b24d21f8466fb55c8b37ed008469c9a2a4d7b8

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6df64d65f6f347bd5f05593ac05401b568dfdf6f0d72e630488f1a942cc90181
MD5 906d7145e90775e71feab562c9f1990e
BLAKE2b-256 1e3a2b5898000243bffe81f6f265109a170ee3922e7c37a51e66f7f30a5dc1a3

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f1a57adcd3d1d78075172ea7c3ea4bcf92627e1c16887a2cbdae2301394abbd
MD5 91667b866bd6b480f9b0fee59646ff2e
BLAKE2b-256 00a738d191800caa413ef00fdb1f17195620ba57f1d9a3751813526f6fcae7ae

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 07ae9f835fd9f235b48e3b9e779191801b360ba47d897c60a507347cdecca5e4
MD5 9305a96b281848093895a01f5815176a
BLAKE2b-256 eb0061ffcc9c4a5b0fda425e330e9b252d79254c66da23b1241d54fce4b84f6c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 606c2f06a9b1dc518aac8981f9c6ca2fa33a8ee7f98e3c5bb53697f03048fae4
MD5 239d3fbdadf43b75264b7cf30dfaaf89
BLAKE2b-256 3b8f9c6cd54bcaa5eb18629a076a7fb0d5388aa2e10ba8f68f46efba0b9db78c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9f4dd80d5f13496188434408d1ed72799eed962aa04fe2c37bb668be7f0c1579
MD5 6b8cdff9fde5ff2d9f2bf096076091e4
BLAKE2b-256 aa5016d8e82e26a4ca3997989dfbdc36ed0923f4fab00c496be804aaf57620f4

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83618a8cf40c8aaf04d0695569c02fd012c2d1bc6e80b20cfb07adf0b3b689df
MD5 90f0b9a95e05e28b53fc69e2ce7c31d6
BLAKE2b-256 d0905072f6f404369bf8dc0e26c90f17b1d0d33c5941d3d6fd0ef522bba549b3

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d188ba069cd4b622331df1c3c6dcd783f4901cd45e1baf441be0e139fa845b9
MD5 d585f4b294c59633da01a4da1d87d0ae
BLAKE2b-256 6ef96b9f326a2e273c91aa60c8b4012a4b56fb047a0556222ea5e698b72af786

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3899438ec01c7a324d5383f0a0d9c218faf68afa48cbf327bea4a6022cb9a676
MD5 e29af15f28caa216ff90e67ea23d0dc7
BLAKE2b-256 7c09fee55e07b103c7afca60529b813cff8983ed7ba23ca08c20f088ddb6ccd5

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.11.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4ed5417ac18ac9f2771978cd83e7f6df7d6630549a1b76ca57bbb8d2b716aaa5
MD5 aa37a270d08081ac1be13fc0914b9a13
BLAKE2b-256 3ee73adae4f76644725d66d38a350883f6c6e98526a262af0f1f50e04acb52ce

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.11.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3c9ab225fee789b9379b9404246cf0a8bcac899e10f458f736c13f8be6d3a8c2
MD5 0d81af30fdf10e789edac6d55538d6da
BLAKE2b-256 d01ebb3292ef2320522e978d0e28dc9313b4b3773f01e01fe589cbfafc75e663

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e982880b946102198d4b7ddbb95bb29e0c92b23bc10b67ac3230c9080348f1b
MD5 016d2790e257aa7a47a9396581b3acd1
BLAKE2b-256 7ad8404252a026ebae8ebdd20704753ae576cc1a72a8f6598b08852d6f474c0a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 50e34f46e164f1e374278a35cdcdb3dadb60f20443e785f099f97f2c4d46e313
MD5 b158356d09b2ecad8094515098a8199f
BLAKE2b-256 4908544e6f5a43ccc2e32aa5a1a946a0416531124401c7d51a4a26775f5b4176

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 895997e4c15b0db1aaf85762e5ce49b76cdafc29207640507201d03b8853d1eb
MD5 752383519d56dfc2499974e6b8f21937
BLAKE2b-256 3373be072d8c80ec51d7d30b253de8a3296a0f448a5829e6c022c6da363a59ee

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.11.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b40646ebabd16488b9a3ebf7db1b4d218d1c76cbda8201635d2da3f580292b56
MD5 41d4639ca08d207ff8212348c10d4eb0
BLAKE2b-256 ef0b142d5851b6a1a7f3bdac16df966cead774676a20f7d07be26787678bf2de

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.11.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for stim-1.11.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 71d6d317d7ab5c79ee84306a879b8f560452aa23fb9f3aaeb3849f145f65a604
MD5 bba82d9284c1737e160334c35599804f
BLAKE2b-256 4b4401d36b2dddd392ab8396597573ac719641e42e84cd7483e5e15526e429e3

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d093f7183c88dc056ca0d430501498420af0adc3d0a93bc66672becc763feaf
MD5 808e9ca91512e87f2d5a6e9038049499
BLAKE2b-256 bf3d90ce1a9803b61508a933c7b4c6b6cc5f8b17d15f35230e9635d1515415b9

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c661727cf040e7866bf3789b013f9c498db48e2080fd2b83403c25593a87eb41
MD5 ef77240e6eefa934e2aa052bb01f28ed
BLAKE2b-256 faacd034b048e3e214681543e06bfa447bdd76c02da869fdb19c9c902a93e6c5

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.11.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.11.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4609542763be50e1218f80a8963b04fe8c98ac558b10f963adb53bc6ab8af198
MD5 f5b06de4727f73bad6b2f9def16291ae
BLAKE2b-256 2bd9e22f643bd65e7f375dc4ba256d4566334b8b28f46611c0943bae71e5dc3b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page