Skip to main content

A fast library for analyzing with quantum stabilizer circuits.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append("H", [0])
for k in range(1, 30):
    c.append("CNOT", [0, k])
c.append("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.12.0.tar.gz (659.2 kB view details)

Uploaded Source

Built Distributions

stim-1.12.0-cp311-cp311-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

stim-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stim-1.12.0-cp311-cp311-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

stim-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

stim-1.12.0-cp310-cp310-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.12.0-cp310-cp310-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

stim-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.12.0-cp39-cp39-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.12.0-cp39-cp39-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

stim-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.12.0-cp38-cp38-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.12.0-cp38-cp38-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

stim-1.12.0-cp38-cp38-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.12.0-cp37-cp37m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.12.0-cp37-cp37m-win32.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.12.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.12.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.12.0-cp36-cp36m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.12.0-cp36-cp36m-win32.whl (1.8 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.12.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.12.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.12.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.12.0.tar.gz.

File metadata

  • Download URL: stim-1.12.0.tar.gz
  • Upload date:
  • Size: 659.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0.tar.gz
Algorithm Hash digest
SHA256 07d7b486900695bd734fd880cf3f3f91df266c7d36ce78d2ad61be8a444eda8d
MD5 c592a282adcbab028a1db5ec0df22897
BLAKE2b-256 971d7a97406981b5f897cc101debafe17c4c6272ad668a08e69ba7c5845d68e7

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 14a31fe3e7d10c4a504b1a64321cc425a4051369734bc34b031e083a890bb354
MD5 8c2ca234fedccbfa85acaed3d297ef44
BLAKE2b-256 31f53bdb6c9d91b5596a089a5162ad2e4cfbda668e5fe13fb174fd3f4f36dcb1

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51331413966d9d4dc77bfc48601627b1291057afdc45b83efa7490f5566ff281
MD5 7373fa5af0aacb7a53287706e8ead362
BLAKE2b-256 32f3f87a13acf31b1c01b760fedf931db1dbffcfa592773036c5581f6f93fa5d

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6dc91a5b7a28cd05d6323ab6d504b6fa5b7723fbc643b170c70a15a75d933a89
MD5 0db67843a8063a189aa0b09f0478ab51
BLAKE2b-256 7487c9ee85bd669f2c008c02ec574734da2a31480db2206693ed0f795516771c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 540ba971aa84f858db1c2523122d1df1c7ae16958aca28c9dc3fe01c0554270f
MD5 e81bfa7fce774264f080cd9df9fba684
BLAKE2b-256 3c0d60ca662ae9fd50fcab9336d7beb476722bc677c4a4bbcd8a216092347425

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8a42d12abde4820fa6549674a19b101e1633627e457437e85fc272a5e525df00
MD5 24c47df92ac1e3c59a89d554e748c459
BLAKE2b-256 eb8b514fd62e5b1dd32689d4ab5a516e935699ffcc73ad93f41155b6abd2eb05

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6472646f683d5a2cc631bfde4e549b12082a2d46fa87abe3ab622dc4b2d2c43a
MD5 467e5c8b066c2b225f959a66d4d0f147
BLAKE2b-256 98de7489e915b5eb0a6a4ae771ff8765b8a746a668a52370ad000c1b6d234990

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b63c6f67ab3020b1e301e8e70b8a467b73577b52cf1fa4f9647de3cea06df765
MD5 3f856a1f6937a8704a0907fe1ee54438
BLAKE2b-256 bfd9a8d0a90c0ee6bbf426168be95d99b5a4ca2da613a694573382ae1dc0ad0a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f5e4ba177a49bc82b830879132466d15c34158147f43a407a3e22c30af67453
MD5 0c03b1309569ef22f7f1a9cd928f64de
BLAKE2b-256 406ee9a188727b552032e9174b8abf85a5878e005065b88389a5f759810534c5

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ae1a9f547a6605583a9c2bb5736f81f685ee65c5ec8836e019fddf2f5ae067db
MD5 432d7da7c2c6a360391103df480737e1
BLAKE2b-256 4a089fc978a68e8774b6083ce1388d35e1bbe9f77fda42efd4d9006869cdb47c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8c2dfbeb2308e024541c324f576b49ac973720a5c32d123b33097904dbf2457
MD5 2f5bc875e7ad97477c405da7e6631293
BLAKE2b-256 c68d4d65b6d5d789727c57aaae26a2a7dc934c3b27a98761073bf73cd58b72ca

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4132bf637525eb06bb43cf368e9cc44a1216a4e8f127c9c4fc368aa4de8f68fd
MD5 4de0d87cdb3fb9c3812119b11d5b8635
BLAKE2b-256 1329149701a943f7867986fdfee4af7552bf1da4c8571997faf52e97c2708fa9

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb119716130d880a2b9e37ddaf4cb20aac7d23af6c08e2251629dee336b46406
MD5 6725b063a7ad0d8e12c93fee14566663
BLAKE2b-256 136330bd04a25793a725fd71e7b19a11f1c10244ef460db4b1b4c73953bb4700

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 17888c85de6fee6a64d65a41097030e95454a3433cb2cb88429d65ad0ab69da9
MD5 c2420522edbd691beeb962a9d16e2ef7
BLAKE2b-256 69bbe4bc049568e248567d5868e0490c8bca5017e2e368bfd1cb00702b2857d0

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8832b18f00d93e0e2a404b6597f73150fc2c94e6d0f770ca951cf09aab95af18
MD5 dcaa2d4df35ae2bbb83aa022ed9ed277
BLAKE2b-256 81cadeeea9c6e46fca1b655d143b977464f2229d09a14aaa0c1359ba2a9bac76

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 126cfcc3dea688f686493c3c4faac2747aef62aa84d9ee8769c9c9746dc894ea
MD5 36d932102eb5fd931afb08653f59edbe
BLAKE2b-256 cd3bb06a1f461b70744692a1acfbf7c0c2fd1fd2a679f26285b0b756b7c11c81

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a9302b9cab631d8f031ddb894e3432748fdd3a5e53454fe6909cd0c14535729
MD5 4b1ad9da49a6c428bdabd2ae945b7501
BLAKE2b-256 7a39569585e8fca9d7669ecc245c4a71f0225a46bf96acff1c20a1703cfc5e79

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c5433995f19daa5ba8d3062a373b164c0d38a79e287d43b7053b2bfaa43ac90d
MD5 c173953461eec1b597d1a3a10943c31d
BLAKE2b-256 06deaf18466e8d768b847e191a74cb0d70bba43b31f840d48e97ec0b9920863d

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.12.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 56c98f0582967367fd1873a12d04798b0e0afebfcd772b7534f024ffc2e760d6
MD5 b801b8e4e6bb8e9a6c3da3313a626641
BLAKE2b-256 dd79e7d50f096a61ecb97b7c86eb501bb1092c923cb024ecda5db06237eb8281

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d5eaa85b14faf1dedb19eafca8d184f202f90dfec25f69c540c26a624cb1b75
MD5 7289dc4135e5964362776195857fbb14
BLAKE2b-256 52e1456edffcf940e593c8e17fcf4d8889c363f42b40e20f3a68037b0160a37b

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ee395cf492536f5f9f1bf7cd8f300b2731ec6ad383f114f1b49033288df5bc35
MD5 f97badae35333cc2cb3b924af418dec6
BLAKE2b-256 55aaa3876d040969b42bc4d31f6b083e73d65a4572da6e110c1ddcea2f28cddf

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08a035c72671517f0809a3ed0c450e72fe699312f9ff08f3e95cd5348aad6883
MD5 9f4c552636f1aad2cdb6ea6a6ed41554
BLAKE2b-256 5d7b54d09b38fd973c6371c10a3d7558f1ab735f118a82580b4e26a709819c01

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a06aec33c164be406185a2a1c11dd319267ad2f019648482de71f0c42e026564
MD5 553766a4f3d15ec54919d234b81a4e88
BLAKE2b-256 ae05beda59a2e8ad8d5878d61b023c6a31f0bfee416cab71e8fbf83e6eec8a0a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.12.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for stim-1.12.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f21fe42f2ba800a1f895fd2e4307a7fd04f153a360899d2c6e8f012a6576bb74
MD5 d754611d5a9652ebd4cdaf1c33781075
BLAKE2b-256 56f32eb83be6368ccf55d1df9ca711062ea8d09831a17a915756fefcd3e291e0

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 547b597fab87ed8e5eec1af5242e36040128f459dfde17aa120695d10125b4df
MD5 0cb67d2ff4ca08e013dff17e644d1943
BLAKE2b-256 e2197070a1e60d6dde44d7914ac06d616b5e0d8bf5a8b930b5d6cdaa525d994a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a19571de45cea54d76efd8d2acff7050fbb651e3372fa1bbbd1b04ccf5d29854
MD5 7e4b0aa0af8dbd4eaf0cdf9f1e3ff213
BLAKE2b-256 4f7ec056ff427b2972b9f2eb64cdefe837a74ba4dc5a3df003368ce32b80a41c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aeb45e0ac4e94e52d4e546f13673db59de77fb78d97a7775063ccd60378feddb
MD5 3012899b28dccef27349d8d7251e8b2c
BLAKE2b-256 cae750632f8a3024113e4d1c0b4bdc9af5475fa45a5fcd419de7bca92cf11b1e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page