Skip to main content

A fast library for analyzing with quantum stabilizer circuits.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append("H", [0])
for k in range(1, 30):
    c.append("CNOT", [0, k])
c.append("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.12.1.tar.gz (659.3 kB view details)

Uploaded Source

Built Distributions

stim-1.12.1-cp312-cp312-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

stim-1.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

stim-1.12.1-cp312-cp312-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

stim-1.12.1-cp312-cp312-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

stim-1.12.1-cp311-cp311-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

stim-1.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stim-1.12.1-cp311-cp311-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

stim-1.12.1-cp311-cp311-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

stim-1.12.1-cp310-cp310-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.12.1-cp310-cp310-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

stim-1.12.1-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.12.1-cp39-cp39-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.12.1-cp39-cp39-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

stim-1.12.1-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.12.1-cp38-cp38-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.12.1-cp38-cp38-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

stim-1.12.1-cp38-cp38-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.12.1-cp37-cp37m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.12.1-cp37-cp37m-win32.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.12.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.12.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.12.1-cp36-cp36m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.12.1-cp36-cp36m-win32.whl (1.8 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.12.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.12.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.12.1-cp36-cp36m-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.12.1.tar.gz.

File metadata

  • Download URL: stim-1.12.1.tar.gz
  • Upload date:
  • Size: 659.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1.tar.gz
Algorithm Hash digest
SHA256 71a8b5ee740e07c888a0676a5ca465c94a3e588de907806db303d607106da7b2
MD5 b9f29a096ae8d73a2b390b0a8cd586bf
BLAKE2b-256 91ba6ae98bf0556dc48e5b5c448117bb0ffd4cf2191973a775f7983b73e75fb7

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2bd9e04046e5b398499d74a94a9abacde70c9f2c3442d5f6a5f193f5f137025f
MD5 e0a937fb937e21f749cdbc88d5fdd805
BLAKE2b-256 454f68a957c528b56427b3ef4ffa3b7ef7181f4e95f9f02197394ba5d9d8f172

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1904dd8779dae758eb4fa95f2b881a6c7903a949e709f9b995f115a6f2ac8f86
MD5 02ab6007ba3d1500c0edde8c952778b1
BLAKE2b-256 9f7e985ade3720d82daa023086a9786be35f5d90c0976e464fa87ed137737d1a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61957d5cbb633a4efe5a9dc21b350fcd03a5767c441137e257517b223ec289be
MD5 5628d2b5a7bec5c261e20b1fc772c61a
BLAKE2b-256 5c2ab47f8166212a9f4baec4b9fb2098bbc7fd86412f3ffe68b1fc12fbdfe17e

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ebece3d630362516c39139dae0c321d2a6353fab78884b41a3f436ed923c1876
MD5 bd6f8baca305ad9db0e3cbdc2ce05d4e
BLAKE2b-256 1905de447fa2bd5530d60ab4925bb4543114a63da1603954ab99ba1214ad084d

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c07f41ac40a0be6edeea03d50242d273e95d4590461a4b7599bab4e8dd29aa6d
MD5 3e23a69dd9c2a6a2c2a5d0041e90e58f
BLAKE2b-256 77e007df39a35954f15c3c7d0e8aebfcf7bb67958e70e5b50f920329a3c690ba

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 475d91d3357d6f29baf08550b29e7fe5678c4ab3863e4ba25782e38f5b945790
MD5 2fbb3eb5a39e8a200062f927938a18f1
BLAKE2b-256 1fcc8ab4f14bdc4b8184eaa020982e8d545284d92eb9808be27eab5e8e42a85c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c26565a81096fb688190ffbbeae51d60289b49753f6c8dcf2ee9beeafc617a2
MD5 b570ca90af7bb6db9846c3ca4804f11f
BLAKE2b-256 fb0a26222c07b5b9d0e34821e76671baff820d3a82430cc9efd1c94f7dc469be

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2d674621ddce52bb0b0e54aaa2bd390707287454fbb0d6a03dc043eb16f752a
MD5 bbb073700100255918d641295f24339b
BLAKE2b-256 3e65f52d6b21d97fa2471ea7cf739d93ed473771ca8068e4a25818767183eac0

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0d62aee6b9265268c728eaefa971215454f9c93cf69bf04c24d1e78231124371
MD5 9d80d039c9fa7c6513679b2f958ef729
BLAKE2b-256 eead1c31704a3a2f24ee2b991b095b4932b8084181a5cd320a9f31a57b935ea1

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14cb6400f49387ddc94c599556fec3f97a8f4c7d57300f984f3ca0cec838e00f
MD5 99c520429ccf791667fc457f9c523495
BLAKE2b-256 10aa2ae925f5c56e76684e0531f7aba9fadf0694b9f7f5ed53407ef2b444ce86

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e066aaed805364bf27ffb2bc9d275111f5b0828156f599c2ab82b02f96134e6
MD5 2e130fa4f85cf83d891cffaa6d6309b5
BLAKE2b-256 c5227b08beb900f007f0b615c76aa9f290e7028b0b4ac589b877f435745f7507

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be50861d1b4219a12264f0bbebb04900ccdd56819f51136283a1e03962d133b1
MD5 22f83b6c02c4dc95a330a5409b610973
BLAKE2b-256 b53f2bd2ad88821b90755cc003c7d3c4ad4d17c05458a1a85b9d2fadc88c8d2e

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 86da45f618d5e8866a5197f10dd74ab23516865da2dbdc95edb54628195f67ff
MD5 533f96f9a21f8eccd9dff206087ca8a3
BLAKE2b-256 734da26a1d04a7bc2fed154f8a5aac7caa2a5d5a323a63771ad10fdc69af5fcb

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0f2fe8c5a0906a8eb3ee3b3c840026912828e98a0dc44aace800e4d1d1b2b9b
MD5 d6a3ad803c281e1b7cb81a081028bcf6
BLAKE2b-256 75841e7a65d2e0d76d5680528c97eea6207bd07433115c3c59ef08bbac91e594

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bdd744bca925fd4f78dd01a5068ebeb090d30d7bae9c4e379526838b8f5881fc
MD5 922addeef030dc236bd94fea91db0d35
BLAKE2b-256 5bf357e4b6e845aa0efb129a81d9fb1ddcaf36b0f267a1060f46ac0d429b2922

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fdb3fb321a0d9f576f3655b525f34f1efccaccc57a1c21840b3f0cda0c93dce4
MD5 eeb7b9cc4e4c2d15175aef8e5fa53b04
BLAKE2b-256 9c915282b96ec928d4ea658d806f3c92c67841ef127a50fe542c1d9442055aee

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ef6c69f9d222381e241af8f97ffe596a02a27eaa01a223b815b3350279515deb
MD5 97e9a5811d2ff6528365ed26de4ab058
BLAKE2b-256 bd5208b6cb1a6af6b6c3880594bcc54102f2db2b310749345abdd89c23b60561

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0587aeaa9791bf5b2b64c993c3211213fdfa247afffdbca5e8d6b329f1ee3926
MD5 f461dacabff38b671a021ed4d59d9e91
BLAKE2b-256 bf54c557a9dd41c1bd50573501a1c52a9f23dcfc2f53a13a556a1d235028aec2

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c17d95d54d5bd163d22558369e67c1a4daeb21f4724c3cbd7f5dc954e5e90519
MD5 8a9ed1dac57f1ecfb808a2de9210a20a
BLAKE2b-256 f2369fac16e710b2fb4fb1c75639a15b3d414db8eba88b1fa87c83a95ed6d3a2

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e479614da248d95c98656985d2d132ca124259664a35a58f7d03b60cd4708ae
MD5 aa526750c8f2fafbcc00d407fd62d4e4
BLAKE2b-256 720892b46a7f9eb532402ae72bd0d45943d16c2f2c516939f7d6caf5b93b6f31

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cf12de3f5ef03d3c248ff37df920aadec828b2f42c99687f0bdb54646ea9eb3a
MD5 0246c5a9fe3395e15c55ad2ed33582d7
BLAKE2b-256 0634b39663cd71eef848e1da4916112dcedf90d00022cc55aaeed327aacf0a2f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.12.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 985757b1d25b7b9b626c8cf646178dd931500820991832c82cff7ea0f6fa3665
MD5 3f3ddf4bb8dda68a17af0682a3c559d3
BLAKE2b-256 8070f35493dfb55c27521cfa4d749038dcbdfa47592593204365f572a7e1d798

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcde7ba4c91496b4d610df1db5976c3e153411a953e4e4969464cb7303a545f1
MD5 538efa1754415d1d4e3ca06524b80caf
BLAKE2b-256 ac5377860203503dafd832393879a031477c5dee6036ab69d24e39fa5c3adfee

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 48b40f8748f21a12dfa1f40209706dc8dc4d4713d83a61f838361e6309ec97aa
MD5 4be0745f9cac790c7557d5fb799ff764
BLAKE2b-256 cd4bee5b0d7201ea2ac767f4ebd38beb4e6bc7d54db6d6c5e0b6e4d35114327a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3783158200ec395f9c40ecf4999b84fec7b8b31f9276993785d64847fa64a1f2
MD5 b45aee7c55af5e8cfda52ce3aa1220c2
BLAKE2b-256 ea7878e7860d632617bace1b8114d15c00f7c086277f460547524523b697f949

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.12.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ee9d04f820164ac748f8fe999ecdda7dc3d4c0d3564805b522464ab0b1183e1e
MD5 dbdb8ad0777ecbed8ef75a4728d09fa6
BLAKE2b-256 051944c2ef09977e3ed09ca26499e826d38b7c1cdde07bb79678c1dae50b0aa7

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.12.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for stim-1.12.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 10fca3e2a4c07310d94710f29d42a808d0b4e0fbc9b6a80a69d37a6d188b60cb
MD5 0b38577d78159b443a476eaa524df064
BLAKE2b-256 22364ca6ab464d546bd28f2196866581581c860d9c7f1c00ee2fdf22d04f0fe2

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78ba6371e3102e4c3dc40cb648c7e7dc4d2b53a8ff41b970253f3883b3bf439b
MD5 c81457efbc5848f72298a6ff316c51d0
BLAKE2b-256 c2d5bfcc8765bde35b64fbc2001e4e736206b05a478c01cd673491fb995a6128

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6f2d3da1d369e2eae45112caf80d4370a896f2caacfecae25393f030f76ca01b
MD5 842edd766c57987d5185646c3beb3b59
BLAKE2b-256 0327212cee7b3325fa14ae464cf6649d4150562b84abfbbf32ee5e379cc4e5b6

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.12.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.12.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7cb52db06fe5b1e33f100dd07fbf9f4cf6acb83a40115177cc6b5b483b88cecc
MD5 f8fbf65719570a6f05ffa39aabb3ec2b
BLAKE2b-256 a93fda480d6412565821a911358b98bc6b29562857b640015a69cecfae26beba

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page