Skip to main content

A fast library for analyzing with quantum stabilizer circuits.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append("H", [0])
for k in range(1, 30):
    c.append("CNOT", [0, k])
c.append("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.13.0.tar.gz (743.8 kB view details)

Uploaded Source

Built Distributions

stim-1.13.0-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

stim-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

stim-1.13.0-cp312-cp312-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

stim-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

stim-1.13.0-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

stim-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stim-1.13.0-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

stim-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

stim-1.13.0-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.13.0-cp310-cp310-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

stim-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.13.0-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.13.0-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

stim-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.13.0-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.13.0-cp38-cp38-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

stim-1.13.0-cp38-cp38-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.13.0-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.13.0-cp37-cp37m-win32.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.13.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.13.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.13.0-cp36-cp36m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.13.0-cp36-cp36m-win32.whl (2.0 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.13.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.13.0-cp36-cp36m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.13.0.tar.gz.

File metadata

  • Download URL: stim-1.13.0.tar.gz
  • Upload date:
  • Size: 743.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0.tar.gz
Algorithm Hash digest
SHA256 f9ddbb4f04df5746a8baf705cfbc41a3efc93eceb8b1010f9fb3de425a4b3e06
MD5 8aa8fc9dd130c5f42ad36d145baa9a1e
BLAKE2b-256 92f132413c12a169d3443d8279b2e144d05159b858724e42f40484061054226f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: stim-1.13.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ab5b39e305c7bbe05b0595345823f188bac5137c6ec73efc95cc98cbdcbe0c7f
MD5 b35502fad872c73d502d0ef527349578
BLAKE2b-256 eec750b66009a751f68408fc543543b02ea05bad5e1a7a227e88002e0e5c65f3

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fb9d6465ecfcc869e76353e1e81d574854f17ab901bbbb844d99c1290cb6edb
MD5 8efdf4d3d87acaf84b9b59f84b7fdba8
BLAKE2b-256 82621ad3fffeb20d2d864c3e4fc9b4da0defbf167a81bbb12272460a3df96463

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45e5cc5fdc44fcd081c5b2357a5fc2b662fabea05c4c9bfffbfec97ddb8b4b85
MD5 66fd3bbe41da808dc90acfbfe3836c3d
BLAKE2b-256 27d014d434abaed39034905d3e9595dca71f6d0c1540f184ba118ab77e47b3dc

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2ec3a91c4cbe9cdb4b3c8cf621c1d45ad2d784b4fbdb702ed507e482bd4261b
MD5 baf4d44bc41d62888bbeeaeb80557cd2
BLAKE2b-256 b8189cad59fb536bbbbdfcdedc7f6103217d4dbacedf737d5920b42e55f0a286

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stim-1.13.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3375e247c618fd2cabb0717911d0aea691d6dcbce59daab3ad7b451051943daa
MD5 2f9d4c64d5236fe3bbf2695bd580792f
BLAKE2b-256 f6850a578d477744c48e7775a216264b6d314a0faebce2adda78fb2b7ece880c

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05572d3c4d594811b9c2ce3c3d595ad29834625cf674ad85682a7839af055996
MD5 f0e9ddb82a455565e594e8f016c82b01
BLAKE2b-256 ae7b56c877c1eb608d14255f6e35a7e12494bafe0fc5173e3de303cd01299644

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6f7f444aea04d98a63e14403c25b853766ad205aecb712148167c597d1cfc35
MD5 0c03b370e05bb4192aed23e8ef3baa7e
BLAKE2b-256 94bd68a191fe44bbf825196bbb90f1b4da226f7a382fd859d67cc52cfc6e121d

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 880c8e4afbf332d878b0e2270c26151f22168cc1241a12f03676ccd87b93b2bf
MD5 acc49fd07c1fa5a8188a5c5492df704b
BLAKE2b-256 6ebdf7895083e5caca58556c7808c0294a01310b6ee81966cc60a8d6ba5131e2

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8055ae3acef59f482e2aa57894151c9f66926842373628a356d3492cca6df8d1
MD5 0a01b8e42e2c7e342575456798c13bc1
BLAKE2b-256 8a47a4bbb17bb3bf21777e61bfc3b6ad321c85d45c737983446d7f23eb750b4b

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 710995a99162bb79d40f155a5c57d0a2576c4463d2ce52c62134eea450492d08
MD5 39aba973b39fe8b68c77fd3309d78e21
BLAKE2b-256 fe5b10c8e56568462bba26718d0902856d6b815b0afc422d2703abd1b3d66d8b

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65d890bd26e8b6b69754c67a33f87f620112f533ed939bdc42eae260f78443d7
MD5 d6ba8f786ad3fd86519945a4689efb7f
BLAKE2b-256 6ac67eb63618e8e60f2f9cfcd0b3ab244307e5c488059477f854d84b041dfe49

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cf48c0354ffff024009616dd659a872a39045ce481d360d90b3cecacf1e0e8f
MD5 97e4fe6da669da00674b0c9843623ec6
BLAKE2b-256 940ad7cb6eaa6e5b368a34cfab8a9f599bd310d878560f95b1b64f99a12e04f0

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 71d43995030f53d358f911247815e8de30d6f1ba504cdf2c3577cab64f9e42b8
MD5 8015a580220c4bf4d21e1c38e4b65a35
BLAKE2b-256 108b66e36f73c9a3fcda00365b78e2f4f8ccdac2f8199f129213ed3af41b5cc1

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a6ec4469d31873c9b790944e742bf87fbabb716b660983e92845c4f378846cd
MD5 d2cab693c7602a4e715ff907aa0c442d
BLAKE2b-256 98aa8f15451927b7c483f0e3f11d40642bc014762bf9dc9e8b593f6a1df64544

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a70f18b7bbe36be5843bb96034a8604d2fbad006a60657a4f73d209b06210d9
MD5 c495a0be35ff1258e5cf97a3cca7d7c5
BLAKE2b-256 6073eb8da545c149e68aa773b30e0e907458aadc227319e4311ad569c4c31fd9

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29832a0429148447c8557fedfa7bd68a393244542b4d7c4a6636654e0050e824
MD5 9fa4e234d91c59e4f5eb6e17e4055334
BLAKE2b-256 31d72fffc520a3c3483451b6dfaa4bd1f0bd272f53f9afd53d4bbdd51f79059b

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.13.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e6c1917650706cfaf97524d7cd06da2d411a1ac72f989771fa25e3264eb6ac43
MD5 0a56940a229c48698989c9a69f3d2de9
BLAKE2b-256 9b92e5bf8d2ed433294b0e6f465384377e804116b8632e1c9e8d7d6dfb90939e

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5ca7261e0825f053c49561e70ae35687983575ad50aee2af16cd25dcb40bae6
MD5 2769714d5037af9da10815d206a89c9c
BLAKE2b-256 ed68d17b00eb44714d14f35b52ee334d7307bac0c995806077cb0872ca135340

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ecedfd5755324b7a44e8309a1c0ba6a4ad2448fcb069e3e703826fb9bed88709
MD5 77ce927feaaf0ca63a95fe67db01c0d1
BLAKE2b-256 a70e566cec01997079b1e443ea4e0e6f42f4eb7608b8bb6218856c12c12916f8

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e0dffd23dee4d9c77a357eb606de77f9a9072465cad73509240da22417eb6b56
MD5 2253fcad4873a82215ec437428becf78
BLAKE2b-256 46e5db9fd29c52e0ac7539364c0261dd65d0e537b5b97b6e7886d8380bb97b3a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.13.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 05670eed32671a96e5f688d33a0269f6928a489c8a3135515f70e22e25692317
MD5 cff08af09dffdaea45e2bc73468e9925
BLAKE2b-256 53274f3fc6df2b21050bc2bdf9266c60a6b2934b5b4efdb04c2ca79c8a52c401

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.13.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2afc76a5dc5a81fa4cd8b916ff78a5cb042d8ecfb147b2095f474f5cfc427a9d
MD5 c5eefaaea895b753b818e0e7176f6e14
BLAKE2b-256 9b376c84261a39cc2dc1911ae18cb1adde8f9172c1a62b774f36c8dcbd5cce3e

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f586f0563f151942b895038e561fab84bbc074ebbfa4965ee6fb3d1297d1f6a2
MD5 ba2e808fb5346b2897f606c25b7f6511
BLAKE2b-256 520430321c9b80129c0363e9fd2585cc005b99c60879b0c21d3c168de027d350

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7a3927cc72d39b3115dfbea7f5b29f12f1baeb85236e9655c7d1cac1f98e3779
MD5 1c05cb2bfcb50ac242cc5bca8c296fb6
BLAKE2b-256 1040865bb05d7f6fd6795d6764460be3c15c67fec9e2f120590266b1a27f1b31

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 927f32f64e78f1dc21e3f8d46cba05b2ee6f9cb74438898a18ae6212ca47549b
MD5 a87654b95d3657d6ac6fae2cfa1cb4dc
BLAKE2b-256 0f780a2727284b4d1d90e7699162b950799867fab9a6995d714aab7179f72d6e

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.13.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2fa2448d8801125f1d9d01ace2a911affd95db7d8ac912062403250e9a5d6998
MD5 71b36a92021c1df026b0984142964218
BLAKE2b-256 989d8bb4014666d34265dd765793efb75f7df1cb3927eb09212d7416c361adbc

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.13.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for stim-1.13.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4127e32cb6603496eab703047da2b05aa42a9fd57a925e45c0aaa38ef840ceb7
MD5 49dea735c93808c436647ab82faceaf1
BLAKE2b-256 d8a1ebf4ac87c076b9df202226d77bce9c631c78e0c2c3ee642fefb4a804add3

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad10a8cce01def490116260fc4ef8c82b87a428fdc557187d88d282bdf1ee846
MD5 8b24f25210dd9767fa3df15a8492765b
BLAKE2b-256 bfb4ab6d6a5066254648c46b2850056f624092860637a6edb338eebc76d66935

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f032bf2a3b3b1bd6a3a0a6b10ad623bf91b7fb40712f8777c49fc61ae1bc0c4f
MD5 4c8d7e7761f4d5a1864c7d25540ea206
BLAKE2b-256 04ea7fffdb248e316ad28a633c07b60561c9ca83e5ced5066065ac828a7d759f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.13.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.13.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8224092c38a7f401d935194c7dee64d34c55b9073ecf2f39d5d4c1cc7775d101
MD5 6f0dc61afa4581ddef048da8d4a19263
BLAKE2b-256 cb0faf365c6112dd6fe19c5be1ae24bd68089e5a82c50a464a3b7e007de89b80

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page