Skip to main content

A fast quantum stabilizer circuit simulator.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append_operation("H", [0])
for k in range(1, 30):
    c.append_operation("CNOT", [0, k])
c.append_operation("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.7.0.tar.gz (149.0 kB view details)

Uploaded Source

Built Distributions

stim-1.7.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.7.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.7.0-cp39-cp39-win32.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86

stim-1.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

stim-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.7.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.7.0-cp38-cp38-win32.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86

stim-1.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

stim-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.7.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.7.0-cp37-cp37m-win32.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.7.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.7.0-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.7.0-cp36-cp36m-win32.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.7.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.7.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.7.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.7.0.tar.gz.

File metadata

  • Download URL: stim-1.7.0.tar.gz
  • Upload date:
  • Size: 149.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0.tar.gz
Algorithm Hash digest
SHA256 816c162c26900b89b49ec53a0e9ddf49266c258e4919bce04080ad79385f0539
MD5 0099a797e15a749dd6a6e3a978ed27e6
BLAKE2b-256 b7c881747c22725c772238ed0a14e7e229ec122e11e841b207bf75246a1ba6da

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5dd2f9542d2b432e89cfa190668cc4db08a4ad05c8c45a280f9a936aafc1e1d1
MD5 7a709c5f5026a09a89184d34d5b50398
BLAKE2b-256 e1114d9498347252403cd6188a8260aff481b9ee87022335110a2cfd5fc99fdc

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa64c4426e72f29b63998b4f09c162a5d52abdb8754620d59945b92dcdf376d3
MD5 368efcb71599de6ef6230ed395a017b4
BLAKE2b-256 c109780d35fa2050397622619a30a7aa934fe4dc70091a7fabfd0e305f4959ca

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36c3d66cfa63680d377786c00ca4e3cf00afa2af6e8805ceb86751f58236daa1
MD5 f8839dd32c4326adcef72c386d8f7ada
BLAKE2b-256 480bb1639b913924fdd42fa115b71cede6646b7d7e38698d7f19f20eb41598a6

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e826ef734801a766ae0d1a73f0c8bdadb2c4868b0163334553353a0cc2a18d67
MD5 b35bb3f3132cd8738dfa33ee1d6a5b56
BLAKE2b-256 a9899ff2ab7c5c1c9925c8e9db295bd5da58441d331820bc9dad0867b4367b3e

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: stim-1.7.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f7098a401aa6e18dec413951df82076873db26040017ee14fa21b62d7c9b231d
MD5 89a2df5432d3f3f2b51e7dc90c033bc1
BLAKE2b-256 06fb34cd429643f8b316bce30d604adb9b93eee37b52cadda14c5743cc20831e

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77cffe58fa6e46e2cfa6a6258aa5fa86ae689282d66c5b19d4bd1f390c738b16
MD5 9748e62b295fe202ffd015c9f949665b
BLAKE2b-256 54d7fde03453d3334eadf54ee81b5a99d061b111935766c1b3bb7434f049786a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 29385ec3ba321e9230624649e7af7885fd5a291019b8c9b1512685ebd51298b4
MD5 f817fc338dcff74d43dd6e279212d96d
BLAKE2b-256 b0763fa74875a00c4047c7c7837f247c1552e409ecc9e1f094c98a1063298225

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 05446ab3ac17f17e2f93a0ee18730fa13a6fbcc9c343ee6b475732eeb23776e5
MD5 0424feb175fd40be29d73539713e641b
BLAKE2b-256 41367e0608fee68047e88e93f31f193dbd115936c58eb2a9224353ea48bae1ca

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e04370856710502a9ffaeeab4164b2af17d128596d3abf80884f0089bdfb5ab2
MD5 0d875f664cdd32e10e382c9fd0820a54
BLAKE2b-256 706b34edcc6ecc5fa36df25e10b478afa4a64db11184db34ec231be2a4a3d40f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: stim-1.7.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0e97051d7eccae2ba2307614faad1b369cf54573d197dfcc946ec3eac186f4b9
MD5 6288f8124bcc18145f7ee4401267ae6f
BLAKE2b-256 e374b9b1c08e9bbfa780b937b668fe63d814128d9951a9a07345a1bcea3fbe1f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 172f062f597aba070b11831ee514cb784e5fd3244475a471b95b93fea795730f
MD5 0308e71ad3b7d1437496bd6505a29b93
BLAKE2b-256 e1de10e9eb369f15de0d30e3d9931c0a9016b2b7f49950554040665c9f384e3a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c8a3e4057f2f169ea4d3ccc003fca217a41e1a070986229c700ed93c3f916a13
MD5 5ebb84c8d29391d9ad2110b6f02a62f6
BLAKE2b-256 5ab2ca2134e7b48acafc3a013ed9ea7698a2bb582be5ca6df5edcbecc677fda0

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd781c7b6079e5b851be4267cf9e87edb41108a9a25214fd66fb5795f18365e6
MD5 3c212928864d653b3a40050052344b7c
BLAKE2b-256 338241d16b3f881d5b84e2e6a8c1e4330204cf49854cee50255e87f8e4113a7b

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d13ba2d9095a0e80b73b76c8650bf6f391a7a5c64b5d09d908b2021055c5eb93
MD5 4a45e294440f26c343f899f04463cdb7
BLAKE2b-256 c83d37a67c5e7aeb9414e9031ddd94db2609ab7836da330e60ec0b23182eca10

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.7.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 77e3e354491efb1d312e9cc36ffac77955a73a8605e06759900a80ba68d68cd8
MD5 8ca8148c5b8c851721e2b507af2b5aec
BLAKE2b-256 15221303a6bc239ecc88b797370416374f91ecaf3cbe92fbae3232a48bcc6e36

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b58174094e859a02ddc907ad9922a45a03d7554550969a1b799bff7ed789461e
MD5 6f965f9a512e695a7977dac67f590787
BLAKE2b-256 6b554ce03bc4687350430662ab159368ce91c6f1f22eca60055526f02ae71c63

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.7.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 059343a892f2fc5fa24b60a55439cd92f40a3695f2f8dd728b6279045f078dad
MD5 aa9680b59c173820b8e18617ffca1b74
BLAKE2b-256 fd2ae667e7cb14db36331bf21da8e26e2acf82e2a25767a45a183e33d6c2dfe4

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 769e6d60a6342e134c946f9196b4ebeaf3494d851a6ebcd8e89f75f9768bdec5
MD5 24a9622f75499a7745b294721352915c
BLAKE2b-256 ea16e0f060d826697dd8d87abf05cd65341211edc8433959da8167ac6eda4ca4

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 057e66886a874d19b1021582d19d5de5dd5f54c518a86c3c83d9f5aa6e5a6045
MD5 a185e6e6cab0d26b2368eca689637b32
BLAKE2b-256 fea322238f0d86e1fca7301c2f0b72e3f710ef5e1f27d82a6361e247562805d3

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.7.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0d608acb57244149846f88a47323d991c2470d6bf5c214824341fe3733b5fdb7
MD5 9352722e091e750e7b7b287ea9471f04
BLAKE2b-256 df8c70582fd001dc992c4af9280fb9f5e2cc0105693933f277c25471b6713491

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38071176f9cea2572e2d380b58bba3ac8cb8174599efc92493ec31c0158c5bdc
MD5 b8223fb5cc9c328c49716b35a49e9077
BLAKE2b-256 7d2a9a8da2d82d0ceb6ca3a428bc7afe2491d30026fc25b3898aae3b9cc5fc3b

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.7.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e5c100b9fe244b93a0bc7815daab2acbabe5740843f6738605ace2ca35ed5ed
MD5 625533f7917c2887d0f6597e9fc9e680
BLAKE2b-256 4340f54e24d76c0d540d1cf604db24e0599797e7a3942d1d3483c4487805c606

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73573b70ee0e2206982ad10490781d48e5378b81a2efaff0d36e324ee4191c9a
MD5 fdd7bcffbaf44a48dc0c0b99ea2b8503
BLAKE2b-256 90a71999ca28b9426cdefcb275fbeaf7ad515df64742554cc860d877e60b2465

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page