Skip to main content

A fast quantum stabilizer circuit simulator.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append_operation("H", [0])
for k in range(1, 30):
    c.append_operation("CNOT", [0, k])
c.append_operation("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.7.1.tar.gz (192.6 kB view details)

Uploaded Source

Built Distributions

stim-1.7.1-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.7.1-cp310-cp310-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.7.1-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.7.1-cp39-cp39-win32.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86

stim-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

stim-1.7.1-cp39-cp39-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.7.1-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.7.1-cp38-cp38-win32.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86

stim-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.7.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

stim-1.7.1-cp38-cp38-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.7.1-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.7.1-cp37-cp37m-win32.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.7.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.7.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.7.1-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.7.1-cp36-cp36m-win32.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.7.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.7.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.7.1.tar.gz.

File metadata

  • Download URL: stim-1.7.1.tar.gz
  • Upload date:
  • Size: 192.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1.tar.gz
Algorithm Hash digest
SHA256 16174779dd3630597775adc60af7d5256514f4c69953e8635c6600c5dbd2d7d3
MD5 3ef8744a3c417812e951dd6b3de94e77
BLAKE2b-256 17317efa316cd25fb7e809cbc465c051f5eac83a1fe38b8dce628f0ed96e9682

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b1e6927aa5d28d8fe219b50235ab966ff0c80d1b6a4e71ee0d0c2229c0c14134
MD5 4baa438c334a107b20f14264fb7cdf43
BLAKE2b-256 94a42c8296c10114d97a9dcfcd2a3ff2434d4986f88cc33e51e3f9715d993894

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78b392783975cc9567668877fd745df1d66d38f8a5414c0e21a88518d3e965ab
MD5 c6e28d0f1936a345c9e9a906e24f30c6
BLAKE2b-256 a9aba71994baf7a94517ff16768df6728beb387f022d812bb10dc2e4024c394f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da3a5f892a0a06cc82af040797d8e786d331a864d4b717bffc854dce2dfd83c9
MD5 e1ccbe01383af5acacbe44d10d6b1f66
BLAKE2b-256 dd0097ba17d089af30c43fd66b09c305683107dc3adf077a25d437f0795becee

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2da4f4dce3bb14598f7169abea6be4c9b9ea09434be3f9fddb9628075ca3d1e2
MD5 5a495093b12434c82687eef19f3cc0a5
BLAKE2b-256 e714d1f3491c622cffa1d8bb5b039ae1284966c1304f5798123a281c23025efe

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: stim-1.7.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 88677676dd1ae602b9628d48e887182ef6cd65eb9b385067139d1d8e741e22c8
MD5 78d6fc253f69423dfa70f13ededf50d8
BLAKE2b-256 da050873a8fc3be7b10bbd04e51801ee90c637ecc15a3ccac5c78a549387c007

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bbe2d5715242590d3412d5f9423e3f04acd45147f954881ad15bbbd6ce40c21
MD5 ec8abb92e4252b1d7601c79088225377
BLAKE2b-256 a7a9ac4aa985e15d1fccd04e10b04b39f278392eaec9ff82bebdf36f88270422

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d9b471277428b6aff24bb7bc42dfad7bb968a57fbabefce789c677cbec62589f
MD5 7ca88908054143b3eeeeb2e33eeafc19
BLAKE2b-256 85b04e3ab481b86e18e3bdfa16b0401505b84e0398cb55ab30c46425cdab927e

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3bd4ece839c0f42e61b624a262471b2f046d24c9eb23e2e029fcf14039fc0a7c
MD5 aa71dd42ad1e28feca3d227bba4186d1
BLAKE2b-256 b75fe4734f38a543fb30f7a3932b1c3682949a2d21eb71fd303129e79f684ae5

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4031f74d9f6d9d91dd0fcfa1fefc5b6d7bb27661608c4219422cfabde9f9769d
MD5 90388955b3529004e978901ebd02707d
BLAKE2b-256 57962d5318eac86b23a2fc2f77097e7c9bb544efe2653b70995e072bad1c7e87

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: stim-1.7.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f14e07854916306baa09068df1cb0a1ff105c944417001746f85e1f8d481833a
MD5 5b520ec76a7f7bb04b6c11558799033e
BLAKE2b-256 b9dd35bb70cc2c0281f0dc1a2e14040dcf7702b612ae65fe5a1b6997fa1ca97a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 207eec3592e37be8100eadddc011b50c151a7060479f16f6cc5981d98ef6bcea
MD5 38655013444751fe50cb4c549ff40417
BLAKE2b-256 08c1a657aa5ba163148f59962c5696621e494e5884be271d9fc666f7c23f27a4

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.7.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9df35d7441e1e7e20ea0356c21aff39c9b9256bc0bb9cff460dbb5a42bfac883
MD5 09a67623089f2732a27cc381928eb5cd
BLAKE2b-256 e9126d43e66cd884a4629f84049fbc91c1056c4847e08f3a6e724ec1245090b8

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81ff319337e1fac17bf1f9275154386d2e0875b6a1b91b7af712984bc9a049c4
MD5 15ac891440858d57d399ce3d919f4fb2
BLAKE2b-256 ea7ecad3984bb2e15a27279574a3e36c8019c33a8ecd2699436ccc7e0511a6ea

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4f15ee3a1a5914468addccc90a772a9790ee246c49e6b99b05c9766636b013dd
MD5 a93b64ee3076159c27c9ba14587fc156
BLAKE2b-256 8be4fa53c7608a33598871f46f363a30fb323ecf97c5924084a4d6b851a65b34

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.7.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5127370e89566a62f6a4345a9d75eea3708412888ab47ecc43031a4fc7e90824
MD5 f5e1ea89bde88f086537aefc8ac16b65
BLAKE2b-256 d4374f77ebce873cb149e05e401a5a0e98b4f1d5fea9a8aa551a1d3422e7ddd8

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec5f98dad30faa309d3437e2fd7d88175a319f6a49a41362376d6dcabad0bdff
MD5 f2d87dce5f7cfb234db5284177bd969c
BLAKE2b-256 fd08fc54ddfc922256bc4b435948996767d9ba9809c76d26806945d748c83d53

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.7.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 27df7edf213301c603aa04e70afd8eff3b89e0b9da7fff55436e73a9054b7b9b
MD5 c59ede1efe4469f3893faa6b7087fb57
BLAKE2b-256 aebe19f643a280ab162768a7520b05d4e4290b387b01b8a6b75be184ffd37476

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f2016d4b6f53247372557072bfd0d46662034cb8d6c486b16a6f3b008d2d0ac9
MD5 7af62a099a36ddd14202d51ee12f8c8f
BLAKE2b-256 6a9964594e4552600e567df0022b8049c8c531e2f9359438cf4672359860456a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.7.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f0453ce171d02411b531278a4821da9b99e181bebc2867f4cf8ee2a0df52f61d
MD5 f58888088eae1d9e6c283fa07ae1bcd2
BLAKE2b-256 39c59a26a9927ac2e4cd37b983aa6a2cf20e4d5279db5a34dab1ab99fc011f02

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.7.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b7e97843e1b381e23b2a040c3cdc1558e254c0fd25ebfc3c92485345227aeee4
MD5 61c34df9763738ee0ba9a58b388c275f
BLAKE2b-256 a213fe2b80be8afb25a2c349ec46a81bb33018ae6ecc5fb29396a9da4a9a77b6

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 267af02ee1b1e8f19ec243c09936088c758c49839512796a9b6ab908fc3ffba6
MD5 0cb0c4f1cab51722acdf9c4791e19160
BLAKE2b-256 4b0fd1f05b3696c6864289a626c60c3d839fa72b208a37c3faeb5a38ce39d176

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.7.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 62f5fb534b07fbb42ada046e803447ab7cbcf931e3d4e4772c133cd493886ba4
MD5 ceb40ff58056a2817c41203fe82918ec
BLAKE2b-256 bb351f0526dd500f015ef43ad2f356a60f26e1f1860acb4232e07e1eefb12361

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.7.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.7.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.9

File hashes

Hashes for stim-1.7.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86c67b7b303ea7b3f05a482a54fe04888e408b61fa13817fd98f47c43837f71b
MD5 444a877fbac535f21a6c5892f6bfcbb5
BLAKE2b-256 855d718ad577a6ee86be0c6f49fe31b3f5ce543672d4624bc8714afbbe7f3842

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page