Skip to main content

A fast quantum stabilizer circuit simulator.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append_operation("H", [0])
for k in range(1, 30):
    c.append_operation("CNOT", [0, k])
c.append_operation("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.8.0.tar.gz (164.7 kB view details)

Uploaded Source

Built Distributions

stim-1.8.0-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.8.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.8.0-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

stim-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

stim-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.8.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.8.0-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

stim-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

stim-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.8.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.8.0-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.8.0-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.8.0-cp36-cp36m-win32.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.8.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.8.0.tar.gz.

File metadata

  • Download URL: stim-1.8.0.tar.gz
  • Upload date:
  • Size: 164.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0.tar.gz
Algorithm Hash digest
SHA256 09105be8317ae28b7dce1f68fca5f0dff7c8243c25ae2dcaebcada28dadddb6f
MD5 5b9a4c24e1756b8f747faa758f69634e
BLAKE2b-256 a7d736196ad48b77efebe7d5d4e198ad0a9cac4f5acb5e0a8a7035133184a641

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 97af1409c23b50f1a818c0034acf027fe47cf4e5479ae03e2c7a15770b8faf9e
MD5 08a5e659c604b8e2966429804a837740
BLAKE2b-256 59bc20e88dd3e6bf697172ccd234c9d011ead71ce37d6527bf8cc5091c53e1f2

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 556a7f1da16c88dd321d1dacea6af9f48746da54427472c71af4ee6cc9c3d524
MD5 78bad93ff520ac5b96b407e14280df3b
BLAKE2b-256 5d5a8c07ef7ad95928c68059f8e7e626d0db7a720781b0f398898ff805f21176

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3e2dbf5efe27879b7ae359b68baa0b171f2927e6e9bb7bb7abe87401265a034
MD5 9021b864e8887d48b65b775ce67a3e89
BLAKE2b-256 0ad1ff059f49bf3a32f20fe002ebe15424ba1fc8bc6812246a1f0c27b47d9594

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7ca170043ba579ea0d4c27f6e2104abe67f05baf9cb2a031d7ede7e09badcd08
MD5 a322cec62be876448dfc451f8b16be55
BLAKE2b-256 77e1ddaf01b1dcb2385cfe21858a3c0dfdb91d1b00a086bd4d8d101f60d12211

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: stim-1.8.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6c68c227467dce8b9d0c76619a3b3d04c65b58230c21058f400c442f359131df
MD5 6813e06770be8e650f3b7ff27e151e0a
BLAKE2b-256 2b03fc3e9404e4998c8671108f003186fb05e64134ba34d8a18bad4a5aa8b11b

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f0101f9226deaba9b4046301401de76adb5b55955f08c3a7a698d489bc2bd32
MD5 afcc6dd39c4e057cd862df4350159764
BLAKE2b-256 a272ba9b2c50df29b1b4d339b0d6e2d4b45121b8180b4780af3e7ed0599021f0

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a094daea9e519de58d5dc21b56faa0e7e029abd8bfb8662c8adf23ba31d05c84
MD5 608c4231e532fca619d777e1471335f6
BLAKE2b-256 fe58d9bb6528cde66cb218b689e22d8f8f8c9238cc2bab7ef03b562428dda245

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5bce745b4fc6a5b14efc668e67223fff5cee641a41aa3a5e1c95d6c45a515979
MD5 35cf3e66afb5963639a8e25066edf7b6
BLAKE2b-256 dbae00d69206b46fb068769b055e2d4e37978c1025e4dde1ae023aac84779c1a

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 40b40e9df73a9644045e433eddeeec7ee397872ee39a1ac8ccf3146498d2f00f
MD5 294ab4183292f912336f7026b02ddfc2
BLAKE2b-256 34af2072f959f223271efb3c8765a24847560dedba8a84e522e4e2d54c9d655f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: stim-1.8.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5da2fe5f059c1a00013d20c715bdd83242962d5a49d0c8dab2c17eab80da5e80
MD5 6bf12f0e56da5040161dcb451bd43a27
BLAKE2b-256 f0b18117e2b19d48d04d0ad81e7f4c22ebe452132ae178ca6a25ebfaaf7d1357

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bba95c78ef18c5afb380bb82bf52dbdc538bd849b772de359c5e501754eb133
MD5 85f3109e0f068101f510c1709f526cd0
BLAKE2b-256 8a99a350177eb957ae5b1b237b76bce85e02b593afe894f1b0d384d7ef4ecc24

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3c6af800a984fb6efb20175cc48e351dd670715a9583d1353b855dd7e3899012
MD5 2ea6feec458caf24c1a66e5c1c77a02f
BLAKE2b-256 71a2592f6dce088519aea00219e8a438f009a8695b226105b2a58cfde8069b9f

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f83238346dcdcb24dcc33788383293a504fc5f1bcd5b0e48efe58b58ad86cd5
MD5 9f9c5a5cfc15369950a7f4130de0f1e8
BLAKE2b-256 2de350ffabba9f1b440bda858d1eb610fd0f02fbfe5da2e021623d4a4647f9e2

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bdf1ee20e4d713d69bbb037142139b983592333852f3f817af7be2c17010e86d
MD5 6b81194c837eb137584713086831074d
BLAKE2b-256 cf38688e82b1340239d2dcde68ef7d2ee6c65b5d4a86affe1f82ca05d4f314e0

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.8.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ad06755784e03caaa313971e379eaca2d77370a21c0e25fd85c47cf89170010c
MD5 09604efbb03c3e172ead84e20956dfbe
BLAKE2b-256 a4e506098feef34622d873b9ac8938fc3d70c69380474af923c81b2e3792ad55

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41f3112cb945f063299c067fe234a2337b2b579afebff59c13615bdf7edc2279
MD5 5e7f98dc323b17faf8cfab1f516a28cc
BLAKE2b-256 9c1b3d8c836ca949afbd504c7641e7d9a9e380e8746f676df4eea5df3fab1325

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bc5c756e7cfa7c5ea1b382a5a35a7dd4823b94a9bdc7b89fb08a611655bb34cb
MD5 b4d176f0136164676e2aa379c699ba9e
BLAKE2b-256 6a44b0df2926f9115c8b9c849459cc1bc0f5b38b08efaa47b186d64849516f71

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b249515402542281445dfad9db692384c83adb31850e34673cbcbe21cf6bda6
MD5 fc751f6ed5cc53f262ce26ac049a5e5b
BLAKE2b-256 5349fdb4b207f2b22288b465d66a8ad02d6b2703eba63d0660e43218fbd04697

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.8.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a0b4fa85e966e29185962583b4816ea0b0af77039a9e366f0e01d70f97ce43e7
MD5 d372368208c84c3fd6abeb13e51f8ae0
BLAKE2b-256 3f0a8e7d7c2bf721c61b57e2cf6924ebdfe220dc882dbf2ce20bbc32a0c33166

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.8.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d39b42fdb8b08d3560fa5996f84ea2902d8fcddc302f7993f8ce1ff5ade57224
MD5 79f7102b9b2a191fdec7bb41b1ec3e8d
BLAKE2b-256 066306c367152d1eb200458bb6fba2248f2ab92fedc9743c8d8621b5ec2cfd8d

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e27180f9aa2979acb4bdf457ca7610886aed97a29b0a6479f7bbbf43cd3f2622
MD5 caf40b7bc38b957caefc5f1d648a384f
BLAKE2b-256 ba5c32e968f7d01187426e976ad259ea464342cd6e18b59a82da7a0d82b35864

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: stim-1.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e34d090573f2edfd8c6b21e048c8497bdde75472241153b2efd11990291b1315
MD5 a1a258b5c861c523d11f788cb63e7f4e
BLAKE2b-256 de4f812055d5d2a4d5c2d2b4fae241a0994e1d5c2a13a3fe0d5891c48cec7718

See more details on using hashes here.

Provenance

File details

Details for the file stim-1.8.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: stim-1.8.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for stim-1.8.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60d71d3c14da09b57a59b3c4df9c513822525b64ab000f7de4a79e14f0e62a2d
MD5 9cfc6323e9bc76b4d452aafbd0a3f878
BLAKE2b-256 433d72a8d2dfb3e9c1a1f41bcfba536c8febd7b3d14fb55f121b9add8889ff33

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page