Skip to main content

Sophisticated Transformers for Biomedical Text and Knowledge Graph Data

Project description

STonKGs

Tests PyPI PyPI - Python Version PyPI - License Documentation Status Code style: black

STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combines structured information from KGs with unstructured text data to learn joint representations. While we demonstrated STonKGs on a biomedical knowledge graph (i.e., INDRA), the model can be applied other domains. In the following sections we describe the scripts that are necessary to be run to train the model on any given dataset.

💪 Getting Started

Data Format

Since STonKGs is operating on both text and KG data, it's expected that the respective data files include columns for both modalities. More specifically, the expected data format is a pandas dataframe (or a pickled pandas dataframe for the pre-training script), in which each row is containing one text-triple pair. The following columns are expected:

  • source: Source node in the triple of a given text-triple pair
  • target: Target node in the triple of a given text-triple pair
  • evidence: Text of a given text-triple pair
  • (optional) class: Class label for a given text-triple pair in fine-tuning tasks (does not apply to the pre-training procedure)

Note that both source and target nodes are required to be in the Biological Expression Langauge (BEL) format, more specifically, they need to be contained in the INDRA KG. For more details on the BEL format, see for example the INDRA documentation for BEL processor and PyBEL.

Pre-training STonKGs

Once you have installed STonKGs as a Python package (see below), you can start training the STonKGs on your dataset by running:

$ python3 -m stonkgs.models.stonkgs_pretraining

The configuration of the model can be easily modified by altering the parameters of the pretrain_stonkgs method. The only required argument to be changed is PRETRAINING_PREPROCESSED_POSITIVE_DF_PATH, which should point to your dataset.

Downloading the pre-trained STonKGs model on the INDRA KG

We released the pre-trained STonKGs models on the INDRA KG for possible future adaptations, such as further pre-training on other KGs. Both STonKGs150k as well as STonKGs300k are accessible through Hugging Face's model hub.

The easiest way to download and initialize the pre-trained STonKGs model is to use the from_default_pretrained() class method (with STonKGs150k being the default):

from stonkgs import STonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_default_pretrained
stonkgs_pretraining = STonKGsForPreTraining.from_default_pretrained()

Alternatively, since our code is based on Hugging Face's transformers package, the pre-trained model can be easily downloaded and initialized using the .from_pretrained() function:

from stonkgs import STonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_pretrained
stonkgs_pretraining = STonKGsForPreTraining.from_pretrained(
    'stonkgs/stonkgs-150k',
)

Extracting Embeddings

The learned embeddings of the pre-trained STonKGs models (or your own STonKGs variants) can be extracted in two simple steps. First, a given dataset with text-triple pairs (a pandas DataFrame, see Data Format) needs to be preprocessed using the preprocess_file_for_embeddings function. Then, one can obtain the learned embeddings using the preprocessed data and the get_stonkgs_embeddings function:

import numpy as np
import pandas as pd
from stonkgs import get_stonkgs_embeddings, preprocess_df_for_embeddings

# Generate some example data
# Note that the evidence sentences are typically longer than in this example data
example_data = pd.DataFrame(
    data=np.array([
            [
              "p(HGNC:1748 ! CDH1)", 
              "p(HGNC:6871 ! MAPK1)", 
              "p(HGNC:3229 ! EGF)",
            ], 
            [
              "p(HGNC:2515 ! CTNND1)", 
              "p(HGNC:6018 ! IL6)", 
              "p(HGNC:4066 ! GAB1)",
            ], 
            [
              "Some example sentence about CDH1 and CTNND1.",
              "Another example about some interaction between MAPK and IL6.",
              "One last example in which Gab1 and EGF are mentioned.",
            ],
        ]), 
    columns=["source", "target", "evidence"],
)

# 1. Preprocess the text-triple data for embedding extraction
preprocessed_df_for_embeddings = preprocess_df_for_embeddings(example_data)

# 2. Extract the embeddings 
embedding_df = get_stonkgs_embeddings(preprocessed_df_for_embeddings)

Fine-tuning STonKGs

The most straightforward way of fine-tuning STonKGs on the original six classfication tasks is to run the fine-tuning script (note that this script assumes that you have a mlflow logger specified, e.g. using the --logging_dir argument):

$ python3 -m stonkgs.models.stonkgs_finetuning

Moreover, using STonKGs for your own fine-tuning tasks (i.e., sequence classification tasks) in your own code is just as easy as initializing the pre-trained model:

from stonkgs import STonKGsForSequenceClassification

# Download the model from the model hub and initialize it for fine-tuning
stonkgs_model_finetuning = STonKGsForSequenceClassification.from_default_pretrained(
    num_labels=number_of_labels_in_your_task,
)

# Initialize a Trainer based on the training dataset
trainer = Trainer(
    model=model,
    args=some_previously_defined_training_args,
    train_dataset=some_previously_defined_finetuning_data,
)

# Fine-tune the model to the moon 
trainer.train()

⬇️ Installation

The most recent release can be installed from PyPI with:

$ pip install stonkgs

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/stonkgs/stonkgs.git

To install in development mode, use the following:

$ git clone git+https://github.com/stonkgs/stonkgs.git
$ cd stonkgs
$ pip install -e .

Warning: Because stellargraph doesn't currently work on Python 3.9, this software can only be installed on Python 3.8.

Citation

Balabin H., Hoyt C.T., Birkenbihl C., Gyori B.M., Bachman J.A., Komdaullil A.T., Plöger P.G., Hofmann-Apitius M., Domingo-Fernández D. STonKGs: A Sophisticated Transformer Trained on Biomedical Text and Knowledge Graphs (2021), bioRxiv, TODO.

⚖️ License

The code in this package is licensed under the MIT License.

🛠️ Development

The final section of the README is for if you want to get involved by making a code contribution.

❓ Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the tests/ folder can be run reproducibly with:

$ tox

Additionally, these tests are automatically re-run with each commit in a GitHub Action.

📦 Making a Release

After installing the package in development mode and installing tox with pip install tox, the commands for making a new release are contained within the finish environment in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

  1. Uses BumpVersion to switch the version number in the setup.cfg and src/stonkgs/version.py to not have the -dev suffix
  2. Packages the code in both a tar archive and a wheel
  3. Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this step
  4. Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
  5. Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can use tox -e bumpversion minor after.

🍪 Cookiecutter Acknowledgement

This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stonkgs-0.1.0.tar.gz (799.0 kB view hashes)

Uploaded Source

Built Distribution

stonkgs-0.1.0-py3-none-any.whl (56.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page