Skip to main content

StreamFlow framework

Project description

StreamFlow

CWL Conformance

The StreamFlow framework is a container-native Workflow Management System (WMS) written in Python 3. It has been designed around two main principles:

  • Allow the execution of tasks in multi-container environments, in order to support concurrent execution of multiple communicating tasks in a multi-agent ecosystem.
  • Relax the requirement of a single shared data space, in order to allow for hybrid workflow executions on top of multi-cloud or hybrid cloud/HPC infrastructures.

Use StreamFlow

PyPI

The StreamFlow module is available on PyPI, so you can install it using pip.

pip install streamflow

Please note that StreamFlow requires python >= 3.8. Then you can execute it directly from the CLI

streamflow run /path/to/streamflow.yml

Docker

StreamFlow Docker images are available on Docker Hub. In order to run a workflow inside the StreamFlow image

  • A StreamFlow project, containing a streamflow.yml file and all the other relevant dependencies (e.g. a CWL description of the workflow steps and a Helm description of the execution environment) needs to be mounted as a volume inside the container, for example in the /streamflow/project folder
  • Workflow outputs, if any, will be stored in the /streamflow/results folder. Therefore, it is necessary to mount such location as a volume in order to persist the results
  • StreamFlow will save all its temporary files inside the /tmp/streamflow location. For debugging purposes, or in order to improve I/O performances in case of huge files, it could be useful to mount also such location as a volume
  • The path of the streamflow.yml file inside the container (e.g. /streamflow/project/streamflow.yml) must be passed as an argument to the Docker container

The script below gives an example of StreamFlow execution in a Docker container

docker run -d \
    --mount type=bind,source="$(pwd)"/my-project,target=/streamflow/project \
    --mount type=bind,source="$(pwd)"/results,target=/streamflow/results \
    --mount type=bind,source="$(pwd)"/tmp,target=/tmp/streamflow \
    alphaunito/streamflow run /streamflow/project/streamflow.yml

Kubernetes

It is also possible to execute the StreamFlow container as a Job in Kubernetes. In this case, StreamFlow is able to deploy Helm charts directly on the parent cluster through the ServiceAccount credentials. In order to do that, the inCluster option must be set to true for each involved module on the streamflow.yml file

deployments:
  helm-deployment:
    type: helm
    config:
      inCluster: true
      ...

A Helm template of a StreamFlow Job can be found in the helm/chart folder.

Please note that, in case RBAC is active on the Kubernetes cluster, a proper RoleBinding must be attached to the ServiceAccount object, in order to give StreamFlow the permissions to manage deployments of pods and executions of tasks.

CWL Compatibility

StreamFlow relies on the Common Workflow Language (CWL) standard to design workflow models. CWL conformance badges for StreamFlow are reported below.

CWL v1.0

Classes

Required features

Optional features

CWL v1.1

Classes

Required features

Optional features

CWL v1.2

Classes

Required features

Optional features

Contribute to StreamFlow

As a first step, get StreamFlow from GitHub

git clone git@github.com:alpha-unito/streamflow.git

Then you can install all the requred packages using the pip install command

cd streamflow
pip install -r requirements.txt

StreamFlow relies on GitHub Actions for PyPI and Docker Hub distributions. Therefore, in order to publish a new version of the software, you only have to augment the version number in version.py file.

StreamFlow Team

Iacopo Colonnelli iacopo.colonnelli@unito.it (creator and maintainer)
Barbara Cantalupo barbara.cantalupo@unito.it (maintainer)
Marco Aldinucci aldinuc@di.unito.it (maintainer)

Gaetano Saitta gaetano.saitta@edu.unito.it (contributor)
Alberto Mulone alberto.mulone@edu.unito.it (contributor)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamflow-0.2.0.dev2.tar.gz (179.9 kB view details)

Uploaded Source

Built Distribution

streamflow-0.2.0.dev2-py2.py3-none-any.whl (212.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file streamflow-0.2.0.dev2.tar.gz.

File metadata

  • Download URL: streamflow-0.2.0.dev2.tar.gz
  • Upload date:
  • Size: 179.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for streamflow-0.2.0.dev2.tar.gz
Algorithm Hash digest
SHA256 e0ffbe31e7479496b376a344deb977b048d11da613194be8ea405c1aa9524cf2
MD5 e73d76d1c91a487084ef319a89171075
BLAKE2b-256 26b9b1573b98f9251c6745bb93f8d052d24ceaff6c10a73070f8b267c730d2ca

See more details on using hashes here.

Provenance

File details

Details for the file streamflow-0.2.0.dev2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for streamflow-0.2.0.dev2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b22a65b35e524c75f5273ec6be347201f095e3ff4607ac84028e0d46819e7140
MD5 7ffb8aba9de61b14a50e27f70a74eb10
BLAKE2b-256 38e3ac53b41d82d00741d7589491b245f6575d4f355c64d4b966d00c41f4f914

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page