Skip to main content

Condition Tree Builder for Streamlit

Project description

Based on react-awesome-query-builder

Check out live demo !

This component allows users to build complex condition trees that can be used to filter a dataframe or build a query.

preview

Install

pip install streamlit-condition-tree

Features

  • Highly configurable
  • Fields can be of type:
    • simple (string, number, bool, date/time/datetime, list)
    • structs (will be displayed in selectbox as tree)
  • Comparison operators can be:
    • binary (== != < > ..)
    • unary (is empty, is null)
    • 'between' (for numbers, dates, times)
    • complex operators like 'proximity'
  • RHS can be:
    • values
    • another fields (of same type)
    • functions (arguments also can be values/fields/funcs)
  • LHS can be field or function
  • Reordering (drag-n-drop) support for rules and groups of rules
  • Export to MongoDb, SQL, JsonLogic, SpEL or ElasticSearch

Basic usage

Filter a dataframe

import pandas as pd
from streamlit_condition_tree import condition_tree, config_from_dataframe

# Initial dataframe
df = pd.DataFrame({
    'First Name': ['Georges', 'Alfred'],
    'Age': [45, 98],
    'Favorite Color': ['Green', 'Red'],
    'Like Tomatoes': [True, False]
})

# Basic field configuration from dataframe
config = config_from_dataframe(df)

# Condition tree
query_string = condition_tree(config)

# Filtered dataframe
df = df.query(query_string)

Build a query

import streamlit as st
from streamlit_condition_tree import condition_tree

# Build a custom configuration
config = {
    'fields': {
        'name': {
            'label': 'Name',
            'type': 'text',
        },
        'qty': {
            'label': 'Age',
            'type': 'number',
            'fieldSettings': {
                'min': 0
            },
        },
        'like_tomatoes': {
            'label': 'Likes tomatoes',
            'type': 'boolean',
        }
    }
}

# Condition tree
return_val = condition_tree(
    config,
    return_type='sql'
)

# Generated SQL
st.write(return_val)

API

Parameters

def condition_tree(
    config: dict,
    return_type: str,
    tree: dict,
    min_height: int,
    placeholder: str,
    key: str
)
  • config: Python dictionary (mostly used to define the fields) that resembles the JSON counterpart of the React component.

A basic configuration can be built from a DataFrame with config_from_dataframe.
For a more advanced configuration, see the component doc and demo.
Note: Javascript functions (ex: validators) are not yet supported.

  • return_type: Format of the returned value :

    • queryString
    • mongodb
    • sql
    • spel
    • elasticSearch
    • jsonLogic

    Default : queryString (can be used to filter a pandas DataFrame using DataFrame.query)

  • tree: Input condition tree (see section below)

    Default : None

  • min_height: Minimum height of the component frame

    Default : 400

  • placeholder: Text displayed when the condition tree is empty

    Default : None

  • key: Fixed identity if you want to change its arguments over time and not have it be re-created.
    Can also be used to access the generated condition tree (see section below).

    Default : None

Export & import a condition tree

When a key is defined for the component, the condition tree generated is accessible through st.session_state[key] as a dictionary.
It can be loaded as an input tree through the tree parameter.

Potential future improvements

  • Javascript support: allow injection of javascript code in the configuration (e.g. validators)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit-condition-tree-jb-0.1.2.tar.gz (2.4 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file streamlit-condition-tree-jb-0.1.2.tar.gz.

File metadata

File hashes

Hashes for streamlit-condition-tree-jb-0.1.2.tar.gz
Algorithm Hash digest
SHA256 be1eda9b8892d274f1d6fc960187bcf78dd4d0eb4781204aa820c32aa2798471
MD5 cfd623c2c167ba869d0f6fd144577802
BLAKE2b-256 c585485d72f896d37315d00c6571ad4bed3e85981cb3f418468dbe724676f449

See more details on using hashes here.

File details

Details for the file streamlit_condition_tree_jb-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for streamlit_condition_tree_jb-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e012b69d62f9754fb526a57fdf88abc3a5a35ef661d03663d4955ed0c9cb8890
MD5 703b19aeb25f4d4478f68f1d54282fc7
BLAKE2b-256 6d3ac7feb2e063e3a734dfc189dce910ce3f5163541cd45c635525a646904b69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page