Condition Tree Builder for Streamlit
Project description
Based on react-awesome-query-builder
Check out live demo !
This component allows users to build complex condition trees that can be used to filter a dataframe or build a query.
Install
pip install streamlit-condition-tree
Features
- Highly configurable
- Fields can be of type:
- simple (string, number, bool, date/time/datetime, list)
- structs (will be displayed in selectbox as tree)
- Comparison operators can be:
- binary (== != < > ..)
- unary (is empty, is null)
- 'between' (for numbers, dates, times)
- complex operators like 'proximity'
- RHS can be:
- values
- another fields (of same type)
- functions (arguments also can be values/fields/funcs)
- LHS can be field or function
- Reordering (drag-n-drop) support for rules and groups of rules
- Export to MongoDb, SQL, JsonLogic, SpEL or ElasticSearch
Basic usage
Filter a dataframe
import pandas as pd
from streamlit_condition_tree import condition_tree, config_from_dataframe
# Initial dataframe
df = pd.DataFrame({
'First Name': ['Georges', 'Alfred'],
'Age': [45, 98],
'Favorite Color': ['Green', 'Red'],
'Like Tomatoes': [True, False]
})
# Basic field configuration from dataframe
config = config_from_dataframe(df)
# Condition tree
query_string = condition_tree(config)
# Filtered dataframe
df = df.query(query_string)
Build a query
import streamlit as st
from streamlit_condition_tree import condition_tree
# Build a custom configuration
config = {
'fields': {
'name': {
'label': 'Name',
'type': 'text',
},
'qty': {
'label': 'Age',
'type': 'number',
'fieldSettings': {
'min': 0
},
},
'like_tomatoes': {
'label': 'Likes tomatoes',
'type': 'boolean',
}
}
}
# Condition tree
return_val = condition_tree(
config,
return_type='sql'
)
# Generated SQL
st.write(return_val)
API
Parameters
def condition_tree(
config: dict,
return_type: str,
tree: dict,
min_height: int,
placeholder: str,
key: str
)
- config: Python dictionary (mostly used to define the fields) that resembles the JSON counterpart of the React component.
A basic configuration can be built from a DataFrame with config_from_dataframe
.
For a more advanced configuration, see the component doc
and demo.
Note: Javascript functions (ex: validators) are not yet supported.
-
return_type: Format of the returned value :
- queryString
- mongodb
- sql
- spel
- elasticSearch
- jsonLogic
Default : queryString (can be used to filter a pandas DataFrame using DataFrame.query)
-
tree: Input condition tree (see section below)
Default : None
-
min_height: Minimum height of the component frame
Default : 400
-
placeholder: Text displayed when the condition tree is empty
Default : None
-
key: Fixed identity if you want to change its arguments over time and not have it be re-created.
Can also be used to access the generated condition tree (see section below).Default : None
Export & import a condition tree
When a key is defined for the component, the condition tree generated is accessible through st.session_state[key]
as a dictionary.
It can be loaded as an input tree through the tree
parameter.
Potential future improvements
- Javascript support: allow injection of javascript code in the configuration (e.g. validators)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file streamlit-condition-tree-jb-0.1.2.tar.gz
.
File metadata
- Download URL: streamlit-condition-tree-jb-0.1.2.tar.gz
- Upload date:
- Size: 2.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | be1eda9b8892d274f1d6fc960187bcf78dd4d0eb4781204aa820c32aa2798471 |
|
MD5 | cfd623c2c167ba869d0f6fd144577802 |
|
BLAKE2b-256 | c585485d72f896d37315d00c6571ad4bed3e85981cb3f418468dbe724676f449 |
File details
Details for the file streamlit_condition_tree_jb-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: streamlit_condition_tree_jb-0.1.2-py3-none-any.whl
- Upload date:
- Size: 2.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e012b69d62f9754fb526a57fdf88abc3a5a35ef661d03663d4955ed0c9cb8890 |
|
MD5 | 703b19aeb25f4d4478f68f1d54282fc7 |
|
BLAKE2b-256 | 6d3ac7feb2e063e3a734dfc189dce910ce3f5163541cd45c635525a646904b69 |