Skip to main content

A python package for Substrait.

Project description

Substrait

PyPI version conda-forge version

A Python package for Substrait, the cross-language specification for data compute operations.

Installation

You can install the Python substrait bindings from PyPI or conda-forge

pip install substrait
conda install -c conda-forge python-substrait  # or use mamba

Goals

This project aims to provide a Python interface for the Substrait specification. It will allow users to construct and manipulate a Substrait Plan from Python for evaluation by a Substrait consumer, such as DataFusion or DuckDB.

Non-goals

This project is not an execution engine for Substrait Plans.

Status

This is an experimental package that is still under development.

Example

Produce a Substrait Plan

The substrait.proto module provides access to the classes that represent a substrait Plan, thus allowing to create new plans.

Here is an example plan equivalent to SELECT first_name FROM person where people table has first_name and surname columns of type String

>>> from substrait import proto
>>> plan = proto.Plan(
...   relations=[
...     proto.PlanRel(
...       root=proto.RelRoot(
...         names=["first_name"], 
...         input=proto.Rel(
...           read=proto.ReadRel(
...             named_table=proto.ReadRel.NamedTable(names=["people"]),
...             base_schema=proto.NamedStruct(
...               names=["first_name", "surname"], 
...               struct=proto.Type.Struct(
...                 types=[
...                   proto.Type(string=proto.Type.String(nullability=proto.Type.Nullability.NULLABILITY_REQUIRED)), 
...                   proto.Type(string=proto.Type.String(nullability=proto.Type.Nullability.NULLABILITY_REQUIRED))
...                 ]  # /types
...               )  # /struct
...             )  # /base_schema
...           )  # /read
...         )  # /input
...       )  # /root
...     )  # /PlanRel
...   ]  # /relations
... )
>>> print(plan)
relations {
  root {
    input {
      read {
        base_schema {
          names: "first_name"
          names: "surname"
          struct {
            types {
              string {
                nullability: NULLABILITY_REQUIRED
              }
            }
            types {
              string {
                nullability: NULLABILITY_REQUIRED
              }
            }
          }
        }
        named_table {
          names: "people"
        }
      }
    }
    names: "first_name"
  }
}
>>> serialized_plan = p.SerializeToString()
>>> serialized_plan
b'\x1aA\x12?\n1\n/\x12#\n\nfirst_name\n\x07surname\x12\x0c\n\x04b\x02\x10\x02\n\x04b\x02\x10\x02:\x08\n\x06people\x12\nfirst_name'

Consume the Substrait Plan

The same plan we generated in the previous example, can be loaded back from its binary representation using the Plan.ParseFromString method:

>>> from substrait.proto import Plan
>>> p = Plan()
>>> p.ParseFromString(serialized_plan)
67
>>> p
relations {
  root {
    input {
      read {
        base_schema {
          names: "first_name"
          names: "surname"
          struct {
            types {
              string {
                nullability: NULLABILITY_REQUIRED
              }
            }
            types {
              string {
                nullability: NULLABILITY_REQUIRED
              }
            }
          }
        }
        named_table {
          names: "people"
        }
      }
    }
    names: "first_name"
  }
}

Produce a Substrait Plan with Ibis

Let's use an existing Substrait producer, Ibis, to provide an example using Python Substrait as the consumer.

In [1]: import ibis

In [2]: movie_ratings = ibis.table(
   ...:     [
   ...:         ("tconst", "str"),
   ...:         ("averageRating", "str"),
   ...:         ("numVotes", "str"),
   ...:     ],
   ...:     name="ratings",
   ...: )
   ...:

In [3]: query = movie_ratings.select(
   ...:     movie_ratings.tconst,
   ...:     avg_rating=movie_ratings.averageRating.cast("float"),
   ...:     num_votes=movie_ratings.numVotes.cast("int"),
   ...: )

In [4]: from ibis_substrait.compiler.core import SubstraitCompiler

In [5]: compiler = SubstraitCompiler()

In [6]: protobuf_msg = compiler.compile(query).SerializeToString()

In [7]: from substrait.proto import Plan

In [8]: my_plan = Plan()

In [9]: my_plan.ParseFromString(protobuf_msg)
Out[9]: 186

In [10]: print(my_plan)
relations {
  root {
    input {
      project {
        common {
          emit {
            output_mapping: 3
            output_mapping: 4
            output_mapping: 5
          }
        }
        input {
          read {
            common {
              direct {
              }
            }
            base_schema {
              names: "tconst"
              names: "averageRating"
              names: "numVotes"
              struct {
                types {
                  string {
                    nullability: NULLABILITY_NULLABLE
                  }
                }
                types {
                  string {
                    nullability: NULLABILITY_NULLABLE
                  }
                }
                types {
                  string {
                    nullability: NULLABILITY_NULLABLE
                  }
                }
                nullability: NULLABILITY_REQUIRED
              }
            }
            named_table {
              names: "ratings"
            }
          }
        }
        expressions {
          selection {
            direct_reference {
              struct_field {
              }
            }
            root_reference {
            }
          }
        }
        expressions {
          cast {
            type {
              fp64 {
                nullability: NULLABILITY_NULLABLE
              }
            }
            input {
              selection {
                direct_reference {
                  struct_field {
                    field: 1
                  }
                }
                root_reference {
                }
              }
            }
            failure_behavior: FAILURE_BEHAVIOR_THROW_EXCEPTION
          }
        }
        expressions {
          cast {
            type {
              i64 {
                nullability: NULLABILITY_NULLABLE
              }
            }
            input {
              selection {
                direct_reference {
                  struct_field {
                    field: 2
                  }
                }
                root_reference {
                }
              }
            }
            failure_behavior: FAILURE_BEHAVIOR_THROW_EXCEPTION
          }
        }
      }
    }
    names: "tconst"
    names: "avg_rating"
    names: "num_votes"
  }
}
version {
  minor_number: 24
  producer: "ibis-substrait"
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

substrait-0.16.0.tar.gz (91.7 kB view details)

Uploaded Source

Built Distribution

substrait-0.16.0-py3-none-any.whl (100.0 kB view details)

Uploaded Python 3

File details

Details for the file substrait-0.16.0.tar.gz.

File metadata

  • Download URL: substrait-0.16.0.tar.gz
  • Upload date:
  • Size: 91.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for substrait-0.16.0.tar.gz
Algorithm Hash digest
SHA256 0cb7cef58be262c1f9d21de1366b3d5d4047f3578099ec3dec9d5de1b61864cd
MD5 084cd8bf6ae5612396453022647b63e5
BLAKE2b-256 cffb42d0cc437a5b515490a4e469762a3b5783b8541ab2dab6eca19e47250664

See more details on using hashes here.

File details

Details for the file substrait-0.16.0-py3-none-any.whl.

File metadata

  • Download URL: substrait-0.16.0-py3-none-any.whl
  • Upload date:
  • Size: 100.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for substrait-0.16.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5e7606197fc96c9d6fd6a7b10d5eff7c8582017ad640cb630bdaefc765214dc9
MD5 3b6a8fed8f5c31bf90a3c0334b42ccab
BLAKE2b-256 a92bd20b1fa35282bbd7b4fdf5b3483d22f59d9b469d3693bff584335b28fab7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page