Skip to main content

Surrogate Final BH properties.

Project description

Welcome to surfinBH!

Point Break

surfinBH provides fits for Surrogate Final Black Hole properties from mergers of binary black holes (BBH). Just like Point Break, but with black holes (BH)! This package lives on GitHub.

These fits are described in the following papers:

[1] Vijay Varma, Davide Gerosa, Francois Hebert and Leo C. Stein, in preparation.

If you find this package useful in your work, please cite reference [1] and, if available, the relevant paper describing the particular model.

Installation

PyPi

surfinBH is available through PyPi.

pip install surfinBH

From source

git clone https://github.com/vijayvarma392/surfinBH
cd surfinBH
python setup.py install

If you do not have root permissions, replace the last step with python setup.py install --user

Dependencies

All of these can be installed through pip or conda.

  • numpy
  • scipy
  • scikit-learn (at least 0.19.1)
  • h5py

Usage

import surfinBH

See list of available fits

print(surfinBH.fits_collection.keys()))
>>> ['7dq2', '3dq8']

Pick your favorite fit and get some basic information about it.

fit_name = '7dq2'
surfinBH.fits_collection[fit_name].desc
>>> 'Fits for remnant mass, spin and kick veclocity for generically precessing
BBH systems.'

surfinBH.fits_collection[fit_name].refs
>>> 'Varma:2018_inprep'

surfinBH.fits_collection[fit_name].refs_url
>>> 'arxiv.2018.xxxx'

Get data for the fit. This only needs to done once, ever.

surfinBH.DownloadData(fit_name)
>>> fit_7dq2.h5  100%[======================>]  42.85M  495KB/s  in 60s

Load the fit. This only needs to be done once at the start of your script.

fit = surfinBH.LoadFits(fit_name)
>>> Loaded surfinBH7dq2 fit.

The evaluation of each fit is different, so be sure to read the documentation. This also defines the frames in which different quantities are defined.

help(fit)

Evaluate the fit. Here we show the evaluation for the surfinBH7dq2 model.

q = 1.2
chiA = [0.1, 0.2, 0.3]
chiB = [0.2, -0.5, 0.3]
x = [q] + chiA + chiB

print(x)
>>> [1.2, 0.1, 0.2, 0.3, 0.2, -0.5, 0.3]

# Final mass and its 1-sigma error etimate
mC, mC_err_est = fit('mC', x)

# Final spin vector and its 1-sigma error estimate
chiC, chiC_err_est = fit('chiC', x)

# Final kick vector and its 1-sigma error estimate
velC, velC_err_est = fit('velC', x)

Credits

The code is developed and maintained by Vijay Varma. Please, report bugs to vvarma@caltech.edu.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

surfinBH-0.0.5.dev0.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

surfinBH-0.0.5.dev0-py2-none-any.whl (12.8 kB view details)

Uploaded Python 2

File details

Details for the file surfinBH-0.0.5.dev0.tar.gz.

File metadata

  • Download URL: surfinBH-0.0.5.dev0.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/2.7.15

File hashes

Hashes for surfinBH-0.0.5.dev0.tar.gz
Algorithm Hash digest
SHA256 dd1cbc26a52f210e9ccedca2706d2cf171d3c17f9734ff5445d24e0c32968b48
MD5 d040cc89bf4fb8eeba8f08769290cd06
BLAKE2b-256 7ee247259a2a5da293d2cb732c030a9203b1af651140f8ad06e3187b00d8efad

See more details on using hashes here.

File details

Details for the file surfinBH-0.0.5.dev0-py2-none-any.whl.

File metadata

  • Download URL: surfinBH-0.0.5.dev0-py2-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/2.7.15

File hashes

Hashes for surfinBH-0.0.5.dev0-py2-none-any.whl
Algorithm Hash digest
SHA256 8958f7a9110e55d2ce00d0b1cdd19ec444543821d0008bffd1797cd14480c03d
MD5 e7f0e1e70c90fb7e77616cd7087b4e75
BLAKE2b-256 00ca346e04746315686322362b99ecaf46632214d1109a5691b5e01ae37822c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page