Skip to main content

Surrogate Final BH properties.

Project description

github PyPI version Conda Version DOI license Build Status

Welcome to surfinBH!

BHScattering

surfinBH provides surrogate final Black Hole properties for mergers of binary black holes (BBH).

These fits are described in the following papers:
[1] Vijay Varma, D. Gerosa, L. C. Stein, F. Hébert and H. Zhang, arxiv:1809.09125.

[2] Vijay Varma, S. E. Field, M. A. Scheel, J. Blackman, D. Gerosa, L. C. Stein, L. E. Kidder, H. P. Pfeiffer, arxiv:1905.09300.

If you find this package useful in your work, please cite reference [1] and, if available, the relevant paper describing the particular model. Please also cite this package, see the DOI badge at the top of this page for BibTeX keys.

This package is compatible with both python2 and python3. This package lives on GitHub and is tested every week. You can see the current build status of the master branch at the top of this page.

Installation

PyPI

surfinBH is available through PyPI:

pip install surfinBH

Conda

surfinBH is available on conda-forge:

conda install -c conda-forge surfinbh

From source

git clone https://github.com/vijayvarma392/surfinBH
cd surfinBH
git submodule init
git submodule update
python setup.py install

If you do not have root permissions, replace the last step with python setup.py install --user

Dependencies

All of these can be installed through pip or conda.

Usage

import surfinBH

See list of available fits

print(surfinBH.fits_collection.keys())
>>> ['NRSur3dq8Remnant', 'NRSur7dq4Remnant', 'surfinBH7dq2']

Pick your favorite fit and get some basic information about it.

fit_name = 'NRSur7dq4Remnant'

surfinBH.fits_collection[fit_name].desc
>>> 'Fits for remnant mass, spin and kick veclocity for generically precessing BBH systems up to mass ratio 4.'

surfinBH.fits_collection[fit_name].refs
>>> 'arxiv:1905.09300'

Load the fit

This only needs to be done once at the start of your script. If the fit data is not already downloaded, this will also download the data.

fit = surfinBH.LoadFits(fit_name)
>>> Loaded NRSur7dq4Remnant fit.

Evaluation

The evaluation of each fit is different, so be sure to read the documentation. This also describes the frames in which different quantities are defined.

help(fit)

We also provide ipython examples for usage of different fits:

Current fits
Older fits

Animations

We also provide a tool to visualize the binary black hole scattering process, see binary black hole explorer. Here's an example:

Making contributions

See this README for instructions on how to make contributions to this package.

You can find the list of contributors here.

Credits

The code is developed and maintained by Vijay Varma. Please report bugs by raising an issue on our GitHub repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

surfinBH-1.1.7.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

surfinBH-1.1.7-py3-none-any.whl (29.3 kB view details)

Uploaded Python 3

File details

Details for the file surfinBH-1.1.7.tar.gz.

File metadata

  • Download URL: surfinBH-1.1.7.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for surfinBH-1.1.7.tar.gz
Algorithm Hash digest
SHA256 5c92b833587a8dab5d122489d8be2640a4f153ab141ba86df64e7b618fea158b
MD5 cafa87a4043ce2ef3977d48990cdbefb
BLAKE2b-256 01525c4b237296ec32c00f3ca13c199e78029e61191dc0e616a393349490daf9

See more details on using hashes here.

File details

Details for the file surfinBH-1.1.7-py3-none-any.whl.

File metadata

  • Download URL: surfinBH-1.1.7-py3-none-any.whl
  • Upload date:
  • Size: 29.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for surfinBH-1.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 60705149855219674bb7a9201628f5961e53348fb798a701522733b1ffb3148e
MD5 9094e1597a29cd0c607ecfa39e51a943
BLAKE2b-256 b4213d31d5e4396a9217852905b9abb6f62d7d5a2f6c877258489890fcd69ce8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page