Skip to main content

Surrogate Final BH properties.

Project description

github PyPI version Conda Version DOI license Build Status

Welcome to surfinBH!

BHScattering

surfinBH provides surrogate final Black Hole properties for mergers of binary black holes (BBH).

These fits are described in the following papers:
[1] V. Varma, D. Gerosa, L. C. Stein, F. Hébert and H. Zhang, arxiv:1809.09125.

[2] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D. Gerosa, L. C. Stein, L. E. Kidder, H. P. Pfeiffer, arxiv:1905.09300.

[3] M. Boschini, D. Gerosa, V. Varma, et al., arXiv:2307.03435

If you find this package useful in your work, please cite reference [1] and, if available, the relevant paper describing the particular model. Please also cite this package, see the DOI badge at the top of this page for BibTeX keys.

This package lives on GitHub, is compatible with python3, and is tested every week. You can see the current build status of the master branch at the top of this page.

Installation

PyPI

surfinBH is available through PyPI:

pip install surfinBH

Conda

surfinBH is available on conda-forge:

conda install -c conda-forge surfinbh

From source

git clone git@github.com:vijayvarma392/surfinBH.git
cd surfinBH
git submodule init
git submodule update
python setup.py install

If you do not have root permissions, replace the last step with python setup.py install --user

Dependencies

All of these can be installed through pip or conda.

Usage

import surfinBH

See list of available fits

print(list(surfinBH.fits_collection.keys()))
>>> ['NRSur3dq8Remnant', 'surfinBH7dq2', 'NRSur7dq4Remnant', 'NRSur7dq4EmriRemnant']

Pick your favorite fit and get some basic information about it.

fit_name = 'NRSur7dq4Remnant'

surfinBH.fits_collection[fit_name].desc
>>> 'Fits for remnant mass, spin and kick veclocity for generically precessing BBH systems up to mass ratio 4.'

surfinBH.fits_collection[fit_name].refs
>>> 'arxiv:1905.09300'

Load the fit

This only needs to be done once at the start of your script. If the fit data is not already downloaded, this will also download the data.

fit = surfinBH.LoadFits(fit_name)
>>> Loaded NRSur7dq4Remnant fit.

Evaluation

The evaluation of each fit is different, so be sure to read the documentation. This also describes the frames in which different quantities are defined.

help(fit)

We also provide ipython examples for usage of different fits:

Current fits
Older fits

Animations

We also provide a tool to visualize the binary black hole scattering process, see binary black hole explorer. Here's an example:

Making contributions

See this README for instructions on how to make contributions to this package.

Credits

The code is maintained by Vijay Varma. You can find the list of contributors here. Please report bugs by raising an issue on our GitHub repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

surfinBH-1.2.2.tar.gz (26.2 kB view details)

Uploaded Source

Built Distribution

surfinBH-1.2.2-py3-none-any.whl (30.3 kB view details)

Uploaded Python 3

File details

Details for the file surfinBH-1.2.2.tar.gz.

File metadata

  • Download URL: surfinBH-1.2.2.tar.gz
  • Upload date:
  • Size: 26.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for surfinBH-1.2.2.tar.gz
Algorithm Hash digest
SHA256 06f3b1dd7a90e45ebe617e615dbe1b9e0304f0697bc53d43665fdb567bd5385b
MD5 330dc1ba6bb7dcc2495b9b8975168611
BLAKE2b-256 db4613804770f54fc0e55cc6899082580a069afe88f916128250960d635b4284

See more details on using hashes here.

File details

Details for the file surfinBH-1.2.2-py3-none-any.whl.

File metadata

  • Download URL: surfinBH-1.2.2-py3-none-any.whl
  • Upload date:
  • Size: 30.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for surfinBH-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 68efd6ae48e8e834abad617be38091db08f4f9ae4cce34155848ee4ceef8bc60
MD5 a83d02060bd889ff84ad245fc0563416
BLAKE2b-256 1b4e880642a7cff8e1517751e2a20e2a16dea4dec6c6806407a793174a404d59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page