Skip to main content

A minimalistic symbolic package.

Project description

Package CodeStyle License PyVersion CI Lint

symbolite: a minimalistic symbolic python package


Symbolite allows you to create symbolic mathematical expressions. Just create a symbol (or more) and operate with them as you will normally do in Python.

>>> from symbolite import Symbol
>>> x = Symbol("x")
>>> y = Symbol("y")
>>> expr1 = x + 3 * y
>>> print(expr1)
x + 3 * y

An expression is just an unnamed Symbol. You can easily replace the symbols by the desired value.

>>> expr2 = expr1.subs_by_name(x=5, y=2)
>>> print(expr2)
5 + 3 * 2

The output is still a symbolic expression, which you can evaluate:

>>> expr2.eval()
11

Notice that we also got a warning (No libsl provided, defaulting to Python standard library.). This is because evaluating an expression requires a actual library implementation, name usually as libsl. The default one just uses python's math module.

You can avoid this warning by explicitely providing an libsl implementation.

>>> from symbolite.impl import libstd
>>> expr2.eval(libstd)
11

You can also import it with the right name and it will be found

>>> from symbolite.impl import libstd as libsl
>>> expr2.eval()
11

In addition to the Symbol class, there is also a Scalar and Vector classes to represent integer, floats or complex numbers, and an array of those.

>>> from symbolite import Scalar, Vector
>>> x = Scalar("x")
>>> y = Scalar("y")
>>> v = Vector("v")
>>> expr1 = x + 3 * y
>>> print(expr1)
x + 3 * y
>>> print(2 * v)
2 * v

Mathematical functions that operate on scalars are available in the scalar module.

>>> from symbolite import scalar
>>> expr3 = 3. * scalar.cos(0.5)
>>> print(expr3)
3.0 * scalar.cos(0.5)

Mathematical functions that operate on vectors are available in the vector module.

>>> from symbolite import vector
>>> expr4 = 3. * vector.sum((1, 2, 3))
>>> print(expr4)
3.0 * vector.sum((1, 2, 3))

Notice that functions are named according to the python math module. Again, this is a symbolic expression until evaluated.

>>> expr3.eval()
2.6327476856711
>>> expr4.eval()
18.0

Three other implementations are provided: NumPy, SymPy, JAX.

>>> from symbolite.impl import libnumpy
>>> expr3.eval(libsl=libnumpy)
2.6327476856711
>>> from symbolite.impl import libsympy
>>> expr3.eval(libsl=libsympy)
2.6327476856711

(notice that the way that the different libraries round and display may vary)

In general, all symbols must be replaced by values in order to evaluate an expression. However, when using an implementation like SymPy that contains a Scalar object you can still evaluate.

>>> from symbolite.impl import libsympy as libsl
>>> (3. * scalar.cos(x).eval(libsl))
3.0*cos(x)

which is actually a SymPy expression with a SymPy symbol (x).

And by the way, checkout vectorize and auto_vectorize functions in the vector module.

Installing:

pip install -U symbolite

FAQ

Q: Is symbolite a replacement for SymPy?

A: No

Q: Does it aim to be a replacement for SymPy in the future?

A: No

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

symbolite-0.6.0.tar.gz (24.9 kB view details)

Uploaded Source

Built Distribution

symbolite-0.6.0-py3-none-any.whl (32.2 kB view details)

Uploaded Python 3

File details

Details for the file symbolite-0.6.0.tar.gz.

File metadata

  • Download URL: symbolite-0.6.0.tar.gz
  • Upload date:
  • Size: 24.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for symbolite-0.6.0.tar.gz
Algorithm Hash digest
SHA256 40fac5e23e7021ffb2d571e334e65c9a6cb9dbfd17af0408fb884007cce837a1
MD5 ac20d1349568fd901ebe3f25dc5bb297
BLAKE2b-256 185eacfdbb0f16a5276f9463803c34f558a0d4586b300a08e3cdc3a1da3be469

See more details on using hashes here.

File details

Details for the file symbolite-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: symbolite-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 32.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for symbolite-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 460aff143f2bee33a6785628460113cb11f8ebf1fb565a0a141ded0c196a09ca
MD5 81f94b91b30212acad0ba3a9b96ecece
BLAKE2b-256 df5576130f1711c3b0de951b2e916456cd02977aa3e2f2df30f6f2878489b257

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page