Skip to main content

Time series synchronization and resample library.

Project description

What is syncing?

syncing is an useful library to synchronise and re-sample time series.

Synchronization is based on the fourier transform and the re-sampling is performed with a specific interpolation method.

Installation

To install it use (with root privileges):

$ pip install syncing

Or download the last git version and use (with root privileges):

$ python setup.py install

Install extras

Some additional functionality is enabled installing the following extras:

  • cli: enables the command line interface.

  • plot: enables to plot the model process and its workflow.

  • dev: installs all libraries plus the development libraries.

To install syncing and all extras (except development libraries), do:

$ pip install syncing[all]

Synchronising Laboratory Data

This example shows how to synchronise two data-sets obd and dyno (respectively they are the On-Board Diagnostics of a vehicle and Chassis dynamometer) with a reference signal ref. To achieve this we use the model syncing model to visualize the model:

>>> from syncing.model import dsp
>>> model = dsp.register()
>>> model.plot(view=False)
SiteMap(...)

[graph]

Tip: You can explore the diagram by clicking on it.

First of all, we generate synthetically the data-sets to feed the model:

>>> import numpy as np
>>> data_sets = {}
>>> time = np.arange(0, 150, .1)
>>> velocity = (1 + np.sin(time / 10)) * 60
>>> data_sets['ref'] = dict(
...     time=time,                                               # [10 Hz]
...     velocity=velocity / 3.6                                  # [m/s]
... )
>>> data_sets['obd'] = dict(
...     time=time[::10] + 12,                                    # 1 Hz
...     velocity=velocity[::10] + np.random.normal(0, 5, 150),   # [km/h]
...     engine_rpm=np.maximum(
...         np.random.normal(velocity[::10] * 3 + 600, 5), 800
...     )                                                        # [RPM]
... )
>>> data_sets['dyno'] = dict(
...     time=time + 6.66,                                        # 10 Hz
...     velocity=velocity + np.random.normal(0, 1, 1500)         # [km/h]
... )

To synchronize the data-sets and plot the workflow:

>>> from syncing.model import dsp
>>> sol = dsp(dict(
...     data=data_sets, x_label='time', y_label='velocity',
...     reference_name='ref', interpolation_method='cubic'
... ))
>>> sol.plot(view=False)
SiteMap(...)

[graph]

Finally, we can analyze the time shifts and the synchronized and re-sampled data-sets:

>>> import pandas as pd
>>> import schedula as sh
>>> pd.DataFrame(sol['shifts'], index=[0])  # doctest: +SKIP
     obd  dyno
...
>>> df = pd.DataFrame(dict(sh.stack_nested_keys(sol['resampled'])))
>>> df.columns = df.columns.map('/'.join)
>>> df['ref/velocity'] *= 3.6
>>> ax = df.set_index('ref/time').plot(secondary_y='obd/engine_rpm')
>>> ax.set_ylabel('[km/h]'); ax.right_ax.set_ylabel('[RPM]')
Text(...)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

syncing-1.0.2.tar.gz (14.6 kB view details)

Uploaded Source

Built Distribution

syncing-1.0.2-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file syncing-1.0.2.tar.gz.

File metadata

  • Download URL: syncing-1.0.2.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.2

File hashes

Hashes for syncing-1.0.2.tar.gz
Algorithm Hash digest
SHA256 d914a298dd2915058bab0e08f273677607c5eec8923ccc43eaa59963d21207cb
MD5 dfd500c1c5df57ffcb749b6fe6de3257
BLAKE2b-256 07bff4f883cd836a9b4d4ed3cbbbbd665d7f856354d05111b517c02655109fc0

See more details on using hashes here.

File details

Details for the file syncing-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: syncing-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 13.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.2

File hashes

Hashes for syncing-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c846aa9b8b680bcbd571325d0f235d1ff0d3568e45e24f1a2d17c8898a1589b3
MD5 9deba5c5413bcffa2b687e02ead9ad0e
BLAKE2b-256 021d1c63a066b99b65ece7c2dae84e23d0e941df5de6fba4881b29cf33c1105e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page