Skip to main content

Time series synchronization and resample library.

Project description

What is syncing?

syncing is an useful library to synchronise and re-sample time series.

Synchronization is based on the fourier transform and the re-sampling is performed with a specific interpolation method.

Installation

To install it use (with root privileges):

$ pip install syncing

Or download the last git version and use (with root privileges):

$ python setup.py install

Install extras

Some additional functionality is enabled installing the following extras:

  • cli: enables the command line interface.

  • plot: enables to plot the model process and its workflow.

  • dev: installs all libraries plus the development libraries.

To install syncing and all extras (except development libraries), do:

$ pip install syncing[all]

Synchronising Laboratory Data

This example shows how to synchronise two data-sets obd and dyno (respectively they are the On-Board Diagnostics of a vehicle and Chassis dynamometer) with a reference signal ref. To achieve this we use the model syncing model to visualize the model:

>>> from syncing.model import dsp
>>> model = dsp.register()
>>> model.plot(view=False)
SiteMap(...)

[graph]

Tip: You can explore the diagram by clicking on it.

First of all, we generate synthetically the data-sets to feed the model:

>>> import numpy as np
>>> data_sets = {}
>>> time = np.arange(0, 150, .1)
>>> velocity = (1 + np.sin(time / 10)) * 60
>>> data_sets['ref'] = dict(
...     time=time,                                               # [10 Hz]
...     velocity=velocity / 3.6                                  # [m/s]
... )
>>> data_sets['obd'] = dict(
...     time=time[::10] + 12,                                    # 1 Hz
...     velocity=velocity[::10] + np.random.normal(0, 5, 150),   # [km/h]
...     engine_rpm=np.maximum(
...         np.random.normal(velocity[::10] * 3 + 600, 5), 800
...     )                                                        # [RPM]
... )
>>> data_sets['dyno'] = dict(
...     time=time + 6.66,                                        # 10 Hz
...     velocity=velocity + np.random.normal(0, 1, 1500)         # [km/h]
... )

To synchronize the data-sets and plot the workflow:

>>> from syncing.model import dsp
>>> sol = dsp(dict(
...     data=data_sets, x_label='time', y_label='velocity',
...     reference_name='ref', interpolation_method='cubic'
... ))
>>> sol.plot(view=False)
SiteMap(...)

[graph]

Finally, we can analyze the time shifts and the synchronized and re-sampled data-sets:

>>> import pandas as pd
>>> import schedula as sh
>>> pd.DataFrame(sol['shifts'], index=[0])
     obd  dyno
...
>>> df = pd.DataFrame(dict(sh.stack_nested_keys(sol['resampled'])))
>>> df.columns = df.columns.map('/'.join)
>>> df['ref/velocity'] *= 3.6
>>> ax = df.set_index('ref/time').plot(secondary_y='obd/engine_rpm')
>>> ax.set_ylabel('[km/h]'); ax.right_ax.set_ylabel('[RPM]')
Text(...)

[image]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

syncing-1.0.5.tar.gz (13.8 kB view details)

Uploaded Source

Built Distribution

syncing-1.0.5-py2.py3-none-any.whl (18.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file syncing-1.0.5.tar.gz.

File metadata

  • Download URL: syncing-1.0.5.tar.gz
  • Upload date:
  • Size: 13.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.1

File hashes

Hashes for syncing-1.0.5.tar.gz
Algorithm Hash digest
SHA256 1ad3afb68ba3285e78964cca4c8adbfce77c1e9e8e6189b196a47e7d2a45a136
MD5 41eef34962e6ff1d0d69b15df65031d0
BLAKE2b-256 cfece7e3b41f4b452e9b6cfdcb5a84831897e407c498cf456222871658b9c3e6

See more details on using hashes here.

File details

Details for the file syncing-1.0.5-py2.py3-none-any.whl.

File metadata

  • Download URL: syncing-1.0.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 18.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.1

File hashes

Hashes for syncing-1.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cec3826b1948db7d71a5e5affb7f173c4c21c8c96ad6693c00bc6798dd6ec28d
MD5 22b6c73bdddeffc386549743f6095736
BLAKE2b-256 b482cc2df345d382eec41b77908b09cb2d13bc275916b4179cf9f607da1d2812

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page