abstract interface with remote database table
Project description
TableCrow
tablecrow
is an abstraction library over a generalized database table.
Currently, tablecrow
offers an abstraction for PostGreSQL tables with simple PostGIS operations.
pip install tablecrow
Data Model:
tablecrow
sees a database record / row as a dictionary of field names to values:
record = {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'}
Similarly, a database schema is seen as a dictionary of field names to Python types:
fields = {'id': int, 'time': datetime, 'length': float, 'name': str}
This also includes Shapely geometric types:
fields = {'id': int, 'polygon': Polygon}
Usage:
from datetime import datetime
from tablecrow import PostGresTable
table = PostGresTable(
hostname='localhost:5432',
database='postgres',
name='testing',
fields={'id': int, 'time': datetime, 'length': float, 'name': str},
primary_key='id',
username='postgres',
password='<password>',
)
# you can add a list of records with `.insert()`
table.insert([
{'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'},
{'id': 3, 'time': datetime(2020, 1, 3), 'length': 2, 'name': 'short boi'},
{'id': 2},
])
# or alternatively set or access a primary key value with square bracket indexing
table[4] = {'time': datetime(2020, 1, 4), 'length': 5, 'name': 'long'}
record = table[3]
# you can query the database with a filtering dictionary or a SQL `WHERE` clause
records = table.records_where({'name': 'short boi'})
records = table.records_where({'name': '%long%'})
records = table.records_where("time <= '20200102'::date")
records = table.records_where("length > 2 OR name ILIKE '%short%'")
compound primary key
from datetime import datetime
from tablecrow import PostGresTable
table = PostGresTable(
hostname='localhost:5432',
database='postgres',
name='testing',
fields={'id': int, 'time': datetime, 'length': float, 'name': str},
primary_key=('id', 'name'),
username='postgres',
password='<password>',
)
# a compound primary key allows more flexibility in ID
table.insert([
{'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'},
{'id': 1, 'time': datetime(2020, 1, 1), 'length': 3, 'name': 'short boi'},
{'id': 3, 'time': datetime(2020, 1, 3), 'length': 2, 'name': 'short boi'},
{'id': 3, 'time': datetime(2020, 1, 3), 'length': 6, 'name': 'long boi'},
{'id': 2, 'name':'short boi'},
])
# key accessors must include entire primary key
table[4, 'long'] = {'time': datetime(2020, 1, 4), 'length': 5}
record = table[3, 'long boi']
geometries
from pyproj import CRS
from shapely.geometry import MultiPolygon, Polygon, box
from tablecrow import PostGresTable
table = PostGresTable(
hostname='localhost:5432',
database='postgres',
name='testing',
fields={'id': int, 'polygon': Polygon, 'multipolygon': MultiPolygon},
primary_key='id',
username='postgres',
password='<password>',
crs=CRS.from_epsg(4326),
)
big_box = box(-77.4, 39.65, -77.1, 39.725)
little_box_inside_big_box = box(-77.7, 39.725, -77.4, 39.8)
little_box_touching_big_box = box(-77.1, 39.575, -76.8, 39.65)
disparate_box = box(-77.7, 39.425, -77.4, 39.5)
multi_box = MultiPolygon([little_box_inside_big_box, little_box_touching_big_box])
table.insert([
{'id': 1, 'polygon': little_box_inside_big_box},
{'id': 2, 'polygon': little_box_touching_big_box},
{'id': 3, 'polygon': disparate_box, 'multipolygon': multi_box},
])
# find all records with any geometry intersecting the given geometry
records = table.records_intersecting(big_box)
# find all records with only specific geometry fields intersecting the given geometry
records = table.records_intersecting(big_box, geometry_fields=['polygon'])
# you can also provide geometries in a different CRS
records = table.records_intersecting(box(268397.8, 4392279.8, 320292.0, 4407509.6), crs=CRS.from_epsg(32618),
geometry_fields=['polygon'])
Acknowledgements
The original core code and methodology of tablecrow
was developed for the National Bathymetric Source project under the Office of Coast Survey of the National Oceanic and Atmospheric Administration (NOAA), a part of the United States Department of Commerce.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tablecrow-1.0.6.tar.gz
.
File metadata
- Download URL: tablecrow-1.0.6.tar.gz
- Upload date:
- Size: 12.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9e6b4d0bc7eb1d76e8ecc3126c84e84e6dee8c15e3dc48221bf4ff3e6e324fc |
|
MD5 | c267c139ccff4b61564e8b99f3e7ac02 |
|
BLAKE2b-256 | e14d452d35978869f0ecd81815dab9fd820c35fee249283ddcaa23a2c6384722 |
Provenance
File details
Details for the file tablecrow-1.0.6-py3-none-any.whl
.
File metadata
- Download URL: tablecrow-1.0.6-py3-none-any.whl
- Upload date:
- Size: 12.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3582f657af3197b4068e71fad96b630bd235c9a590382cb42f80d886523bdd92 |
|
MD5 | 3abf9bdcbcb0ff7cc24752a17c167b43 |
|
BLAKE2b-256 | a96ffe17609fadce3c1afb76b742b61ab87d6070ca44c4f5e4d66bc0358a4e8a |