Skip to main content

abstract interface with remote database table

Project description

TableCrow

tests build version license

tablecrow is an abstraction library over a generalized database table. Currently, tablecrow offers an abstraction for PostGreSQL tables with simple PostGIS operations.

pip install tablecrow

Data Model:

tablecrow sees a database record / row as a dictionary of field names to values:

record = {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'}

Similarly, a database schema is seen as a dictionary of field names to Python types:

fields = {'id': int, 'time': datetime, 'length': float, 'name': str}

This also includes Shapely geometric types:

fields = {'id': int, 'polygon': Polygon}

Usage:

from datetime import datetime

from tablecrow import PostGresTable

table = PostGresTable(
    hostname='localhost:5432',
    database='postgres',
    name='testing',
    fields={'id': int, 'time': datetime, 'length': float, 'name': str},
    primary_key='id',
    username='postgres',
    password='<password>',
)

# you can add a list of records with `.insert()`
table.insert([
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 2, 'name': 'short boi'},
    {'id': 2},
])

# or alternatively set or access a primary key value with square bracket indexing
table[4] = {'time': datetime(2020, 1, 4), 'length': 5, 'name': 'long'}
record = table[3]

# you can query the database with a filtering dictionary or a SQL `WHERE` clause
records = table.records_where({'name': 'short boi'})
records = table.records_where({'name': '%long%'})
records = table.records_where("time <= '20200102'::date")
records = table.records_where("length > 2 OR name ILIKE '%short%'")

compound primary key

from datetime import datetime

from tablecrow import PostGresTable

table = PostGresTable(
    hostname='localhost:5432',
    database='postgres',
    name='testing',
    fields={'id': int, 'time': datetime, 'length': float, 'name': str},
    primary_key=('id', 'name'),
    username='postgres',
    password='<password>',
)

# a compound primary key allows more flexibility in ID
table.insert([
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'},
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 3, 'name': 'short boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 2, 'name': 'short boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 6, 'name': 'long boi'},
    {'id': 2, 'name':'short boi'},
])

# key accessors must include entire primary key
table[4, 'long'] = {'time': datetime(2020, 1, 4), 'length': 5}
record = table[3, 'long boi']

geometries

from pyproj import CRS
from shapely.geometry import MultiPolygon, Polygon, box

from tablecrow import PostGresTable

table = PostGresTable(
    hostname='localhost:5432',
    database='postgres',
    name='testing',
    fields={'id': int, 'polygon': Polygon, 'multipolygon': MultiPolygon},
    primary_key='id',
    username='postgres',
    password='<password>',
    crs=CRS.from_epsg(4326),
)

big_box = box(-77.4, 39.65, -77.1, 39.725)
little_box_inside_big_box = box(-77.7, 39.725, -77.4, 39.8)
little_box_touching_big_box = box(-77.1, 39.575, -76.8, 39.65)
disparate_box = box(-77.7, 39.425, -77.4, 39.5)

multi_box = MultiPolygon([little_box_inside_big_box, little_box_touching_big_box])

table.insert([
    {'id': 1, 'polygon': little_box_inside_big_box},
    {'id': 2, 'polygon': little_box_touching_big_box},
    {'id': 3, 'polygon': disparate_box, 'multipolygon': multi_box},
])

# find all records with any geometry intersecting the given geometry
records = table.records_intersecting(big_box)

# find all records with only specific geometry fields intersecting the given geometry
records = table.records_intersecting(big_box, geometry_fields=['polygon'])

# you can also provide geometries in a different CRS
records = table.records_intersecting(box(268397.8, 4392279.8, 320292.0, 4407509.6), crs=CRS.from_epsg(32618),
                                     geometry_fields=['polygon'])

Acknowledgements

The original core code and methodology of tablecrow was developed for the National Bathymetric Source project under the Office of Coast Survey of the National Oceanic and Atmospheric Administration (NOAA), a part of the United States Department of Commerce.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tablecrow-1.0.6.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

tablecrow-1.0.6-py3-none-any.whl (12.0 kB view details)

Uploaded Python 3

File details

Details for the file tablecrow-1.0.6.tar.gz.

File metadata

  • Download URL: tablecrow-1.0.6.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.9.0

File hashes

Hashes for tablecrow-1.0.6.tar.gz
Algorithm Hash digest
SHA256 b9e6b4d0bc7eb1d76e8ecc3126c84e84e6dee8c15e3dc48221bf4ff3e6e324fc
MD5 c267c139ccff4b61564e8b99f3e7ac02
BLAKE2b-256 e14d452d35978869f0ecd81815dab9fd820c35fee249283ddcaa23a2c6384722

See more details on using hashes here.

Provenance

File details

Details for the file tablecrow-1.0.6-py3-none-any.whl.

File metadata

  • Download URL: tablecrow-1.0.6-py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.9.0

File hashes

Hashes for tablecrow-1.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 3582f657af3197b4068e71fad96b630bd235c9a590382cb42f80d886523bdd92
MD5 3abf9bdcbcb0ff7cc24752a17c167b43
BLAKE2b-256 a96ffe17609fadce3c1afb76b742b61ab87d6070ca44c4f5e4d66bc0358a4e8a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page