Skip to main content

abstract interface with remote database table

Project description

TableCrow

tests build version license style

tablecrow is an abstraction library over a generalized database table. Currently, tablecrow offers an abstraction for PostGreSQL tables with simple PostGIS operations.

pip install tablecrow

Data Model

tablecrow sees a database schema as a mapping of field names to Python types, and a database record / row as a mapping of field names to values:

from datetime import datetime

fields = {'id': int, 'time': datetime, 'length': float, 'name': str}
record = {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'}

For databases with a spatial extension, you can use Shapely geometries:

from shapely.geometry import Polygon

fields = {'id': int, 'polygon': Polygon}
record = {'id': 1, 'polygon': Polygon([(-77.1, 39.65), (-77.1, 39.725), (-77.4, 39.725), (-77.4, 39.65), (-77.1, 39.65)])}

Usage

create a simple table (single primary key, no geometries)

from datetime import datetime
from tablecrow import PostGresTable

table = PostGresTable(
    hostname='localhost:5432',
    database='postgres',
    name='testing',
    fields={'id': int, 'time': datetime, 'length': float, 'name': str},
    primary_key='id',
    username='postgres',
    password='<password>',
)

# add a list of records
table.insert([
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 2, 'name': 'short boi'},
    {'id': 2},
    {'id': 15, 'time': datetime(2020, 3, 3)},
])

# set, access, or delete a single record using its primary key value
table[4] = {'time': datetime(2020, 1, 4), 'length': 5, 'name': 'long'}
record = table[3]
del table[2]

# list of records in the table
num_records = len(table)
records = table.records

# query the database with a dictionary, or a SQL `WHERE` clause as a string
records = table.records_where({'name': 'short boi'})
records = table.records_where({'name': None})
records = table.records_where({'name': '%long%'})
records = table.records_where("time <= '20200102'::date")
records = table.records_where("length > 2 OR name ILIKE '%short%'")

# delete records with a query
table.delete_where({'name': None})

create a table with multiple primary key fields

from datetime import datetime
from tablecrow import PostGresTable

table = PostGresTable(
    hostname='localhost:5432',
    database='postgres',
    name='testing',
    fields={'id': int, 'time': datetime, 'length': float, 'name': str},
    primary_key=('id', 'name'),
    username='postgres',
    password='<password>',
)

# a compound primary key allows more flexibility in ID
table.insert([
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'},
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 3, 'name': 'short boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 2, 'name': 'short boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 6, 'name': 'long boi'},
    {'id': 2, 'name':'short boi'},
])

# key accessors must include entire primary key
table[4, 'long'] = {'time': datetime(2020, 1, 4), 'length': 5}
record = table[3, 'long boi']

create a table with geometry fields

the database must have a spatial extension (such as PostGIS) installed

from pyproj import CRS
from shapely.geometry import MultiPolygon, Polygon, box
from tablecrow import PostGresTable

table = PostGresTable(
    hostname='localhost:5432',
    database='postgres',
    name='testing',
    fields={'id': int, 'polygon': Polygon, 'multipolygon': MultiPolygon},
    primary_key='id',
    username='postgres',
    password='<password>',
    crs=CRS.from_epsg(4326),
)

big_box = box(-77.4, 39.65, -77.1, 39.725)
little_box_inside_big_box = box(-77.7, 39.725, -77.4, 39.8)
little_box_touching_big_box = box(-77.1, 39.575, -76.8, 39.65)
disparate_box = box(-77.7, 39.425, -77.4, 39.5)
big_box_in_utm18n = box(268397.8, 4392279.8, 320292.0, 4407509.6)

multi_box = MultiPolygon([little_box_inside_big_box, little_box_touching_big_box])

table.insert([
    {'id': 1, 'polygon': little_box_inside_big_box},
    {'id': 2, 'polygon': little_box_touching_big_box},
    {'id': 3, 'polygon': disparate_box, 'multipolygon': multi_box},
])

# find all records with any geometry intersecting the given geometry
records = table.records_intersecting(big_box)

# find all records with only specific geometry fields intersecting the given geometry
records = table.records_intersecting(big_box, geometry_fields=['polygon'])

# you can also provide geometries in a different CRS
records = table.records_intersecting(
    big_box_in_utm18n,
    crs=CRS.from_epsg(32618),
    geometry_fields=['polygon'],
)

Extending

to write your own custom table interface, extend DatabaseTable:

from typing import Any, Mapping, Sequence, Union
from tablecrow.table import DatabaseTable

class CustomDatabaseTable(DatabaseTable):
    # mapping from Python types to database types
    FIELD_TYPES = {
        'NoneType': '',
        'bool': '',
        'float': '',
        'int': '',
        'str': '',
        'bytes': '',
        'date': '',
        'time': '',
        'datetime': '',
        'timedelta': '',
    }

    def __init__(self, hostname: str, database: str, name: str, fields: {str: type}):
        super().__init__(hostname, database, name, fields)
        raise NotImplementedError('implement database connection and table creation here')

    @property
    def exists(self) -> bool:
        raise NotImplementedError('implement database table existence check here')

    @property
    def schema(self) -> str:
        raise NotImplementedError('implement string generation for the database schema here')

    @property
    def remote_fields(self) -> {str: type}:
        raise NotImplementedError('implement accessor for database fields here')

    def records_where(self, where: Union[Mapping[str, Any], str, Sequence[str]]) -> [{str: Any}]:
        raise NotImplementedError('implement database record query here')

    def insert(self, records: [{str: Any}]):
        raise NotImplementedError('implement database record insertion here')

    def delete_where(self, where: Union[Mapping[str, Any], str, Sequence[str]]):
        raise NotImplementedError('implement database record deletion here')

    def delete_table(self):
        raise NotImplementedError('implement database table deletion here')

Acknowledgements

The original core code and methodology of tablecrow was developed for the National Bathymetric Source project under the Office of Coast Survey of the National Oceanic and Atmospheric Administration (NOAA), a part of the United States Department of Commerce.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tablecrow-1.1.4.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

tablecrow-1.1.4-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file tablecrow-1.1.4.tar.gz.

File metadata

  • Download URL: tablecrow-1.1.4.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for tablecrow-1.1.4.tar.gz
Algorithm Hash digest
SHA256 47033063de9b8cd9bee302a24351c30e12243b512289ca0de4c3a5262f3084d2
MD5 a346d935f420e74f746243243ad6c789
BLAKE2b-256 2ba480c75afff5008e8f99872319611c7e0b4b46fcd55e3c225e90135a404c77

See more details on using hashes here.

Provenance

File details

Details for the file tablecrow-1.1.4-py3-none-any.whl.

File metadata

  • Download URL: tablecrow-1.1.4-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for tablecrow-1.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 38420cbe9b454ae49d3da13de509647b50bd10e6302c5169532c58967abec7de
MD5 b0a7f9332790510b507d25eab2f52856
BLAKE2b-256 c570f47d0cfc022eb49b0ab7988701f8dc453da3e55221b150d24b29a2c8cc56

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page