Skip to main content

abstract interface with remote database table

Project description

TableCrow

tests codecov build version license style

tablecrow is an abstraction over a generalized database table. Currently, tablecrow offers an abstraction for PostGreSQL and SQLite tables with simple PostGIS and SpatiaLite operations.

pip install tablecrow

Data Model

tablecrow sees a database schema as a mapping of field names to Python types, and a database record / row as a mapping of field names to values:

from datetime import datetime

fields = {'id': int, 'time': datetime, 'length': float, 'name': str}
record = {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'}

For databases with a spatial extension, you can use Shapely geometries:

from shapely.geometry import Polygon

fields = {'id': int, 'polygon': Polygon}
record = {'id': 1, 'polygon': Polygon([(-77.1, 39.65), (-77.1, 39.725), (-77.4, 39.725), (-77.4, 39.65), (-77.1, 39.65)])}

Usage

connect to an existing database

import tablecrow

# list all tables in a SQLite database file
sqlite_tables = tablecrow.connect(
    '~/test_database.db',
)

# connect to a PostGres database table
postgres_table = tablecrow.connect(
    'https://user:password@test.com/database:5432',
    database='postgres',
    table_name='test_table',
)

create a simple table (single primary key, no geometries)

from datetime import datetime
from tablecrow import PostGresTable

table = PostGresTable(
    hostname='localhost:5432',
    database='postgres',
    table_name='testing',
    fields={'id': int, 'time': datetime, 'length': float, 'name': str},
    primary_key='id',
    username='postgres',
    password='<password>',
)

# add a list of records
table.insert([
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 2, 'name': 'short boi'},
    {'id': 2},
    {'id': 15, 'time': datetime(2020, 3, 3)},
])

# set, access, or delete a single record using its primary key value
table[4] = {'time': datetime(2020, 1, 4), 'length': 5, 'name': 'long'}
record = table[3]
del table[2]

# list of records in the table
num_records = len(table)
records = table.records

# query the database with a dictionary, or a SQL `WHERE` clause as a string
records = table.records_where({'name': 'short boi'})
records = table.records_where({'name': None})
records = table.records_where({'name': '%long%'})
records = table.records_where("time <= '20200102'::date")
records = table.records_where("length > 2 OR name ILIKE '%short%'")

# delete records with a query
table.delete_where({'name': None})

create a table with multiple primary key fields

from datetime import datetime
from tablecrow import SQLiteTable

table = SQLiteTable(
    path='test_database.db',
    table_name='testing',
    fields={'id': int, 'time': datetime, 'length': float, 'name': str},
    primary_key=('id', 'name'),
)

# a compound primary key allows more flexibility in ID
table.insert([
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 4.4, 'name': 'long boi'},
    {'id': 1, 'time': datetime(2020, 1, 1), 'length': 3, 'name': 'short boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 2, 'name': 'short boi'},
    {'id': 3, 'time': datetime(2020, 1, 3), 'length': 6, 'name': 'long boi'},
    {'id': 2, 'name': 'short boi'},
])

# key accessors must include entire primary key
table[4, 'long'] = {'time': datetime(2020, 1, 4), 'length': 5}
record = table[3, 'long boi']

create a table with geometry fields

the database must have a spatial extension (such as PostGIS) installed

from pyproj import CRS
from shapely.geometry import MultiPolygon, Polygon, box
from tablecrow import PostGresTable

table = PostGresTable(
    hostname='localhost:5432',
    database='postgres',
    table_name='testing',
    fields={'id': int, 'polygon': Polygon, 'multipolygon': MultiPolygon},
    primary_key='id',
    username='postgres',
    password='<password>',
    crs=CRS.from_epsg(4326),
)

big_box = box(-77.4, 39.65, -77.1, 39.725)
little_box_inside_big_box = box(-77.7, 39.725, -77.4, 39.8)
little_box_touching_big_box = box(-77.1, 39.575, -76.8, 39.65)
disparate_box = box(-77.7, 39.425, -77.4, 39.5)
big_box_in_utm18n = box(268397.8, 4392279.8, 320292.0, 4407509.6)

multi_box = MultiPolygon([little_box_inside_big_box, little_box_touching_big_box])

table.insert([
    {'id': 1, 'polygon': little_box_inside_big_box},
    {'id': 2, 'polygon': little_box_touching_big_box},
    {'id': 3, 'polygon': disparate_box, 'multipolygon': multi_box},
])

# find all records with any geometry intersecting the given geometry
records = table.records_intersecting(big_box)

# find all records with only specific geometry fields intersecting the given geometry
records = table.records_intersecting(big_box, geometry_fields=['polygon'])

# you can also provide geometries in a different CRS
records = table.records_intersecting(
    big_box_in_utm18n,
    crs=CRS.from_epsg(32618),
    geometry_fields=['polygon'],
)

Extending

to write your own custom table interface, extend DatabaseTable:

from typing import Any, Mapping, Sequence, Union
from tablecrow.tables.base import DatabaseTable


class CustomDatabaseTable(DatabaseTable):
    # mapping from Python types to database types
    FIELD_TYPES = {
        'NoneType': 'NotImplemented',
        'bool': 'NotImplemented',
        'float': 'NotImplemented',
        'int': 'NotImplemented',
        'str': 'NotImplemented',
        'bytes': 'NotImplemented',
        'date': 'NotImplemented',
        'time': 'NotImplemented',
        'datetime': 'NotImplemented',
        'timedelta': 'NotImplemented',
    }

    def __init__(self, database: str, name: str, fields: {str: type}, primary_key: Union[str, Sequence[str]] = None, hostname: str = None,
                 username: str = None, password: str = None, users: [str] = None):
        super().__init__(database, name, fields, primary_key, hostname, username, password, users)
        raise NotImplementedError('implement database connection and table creation here')

    @property
    def exists(self) -> bool:
        raise NotImplementedError('implement database table existence check here')

    @property
    def schema(self) -> str:
        raise NotImplementedError('implement string generation for the database schema here')

    @property
    def remote_fields(self) -> {str: type}:
        raise NotImplementedError('implement accessor for database fields here')

    def records_where(self, where: Union[Mapping[str, Any], str, Sequence[str]]) -> [{str: Any}]:
        raise NotImplementedError('implement database record query here')

    def insert(self, records: [{str: Any}]):
        raise NotImplementedError('implement database record insertion here')

    def delete_where(self, where: Union[Mapping[str, Any], str, Sequence[str]]):
        raise NotImplementedError('implement database record deletion here')

    def delete_table(self):
        raise NotImplementedError('implement database table deletion here')

Acknowledgements

The original core code and methodology of tablecrow was developed for the National Bathymetric Source project under the Office of Coast Survey of the National Oceanic and Atmospheric Administration (NOAA), a part of the United States Department of Commerce, by @glenrice-noaa, @Casiano-Koprowski, and @zacharyburnett.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tablecrow-1.3.6.tar.gz (20.8 kB view details)

Uploaded Source

Built Distribution

tablecrow-1.3.6-py3-none-any.whl (22.6 kB view details)

Uploaded Python 3

File details

Details for the file tablecrow-1.3.6.tar.gz.

File metadata

  • Download URL: tablecrow-1.3.6.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for tablecrow-1.3.6.tar.gz
Algorithm Hash digest
SHA256 04ee9867035febefce3d379b07cb6f2090844536961f20f4247d550843c85376
MD5 8a1b85ccebceec84aaee8b37c21830e9
BLAKE2b-256 922cb36e755f3d9d38194f338c7f27443b29306e54659b161e2f08374a982792

See more details on using hashes here.

Provenance

File details

Details for the file tablecrow-1.3.6-py3-none-any.whl.

File metadata

  • Download URL: tablecrow-1.3.6-py3-none-any.whl
  • Upload date:
  • Size: 22.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for tablecrow-1.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 b120bf1c631ea8c27f120b75bf4f4cd0122367389ea86f51b8518196276bd279
MD5 63ed4824c91d9fc05d5166e39867a308
BLAKE2b-256 a7a8225057788514ba9c55243b3681d78e9e5c8dfef100f87edccbc56bb51f16

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page