Skip to main content

Generate SQL tables, load and extract data, based on JSON Table Schema descriptors.

Project description

tableschema-sql-py
==================

| |Travis|
| |Coveralls|
| |PyPi|
| |Gitter|

Generate and load SQL tables based on `Table
Schema <http://specs.frictionlessdata.io/table-schema/>`__ descriptors.

Features
--------

- implements ``tableschema.Storage`` interface
- provides additional features like indexes and updating

Getting Started
---------------

Installation
~~~~~~~~~~~~

The package use semantic versioning. It means that major versions could
include breaking changes. It's highly recommended to specify ``package``
version range in your ``setup/requirements`` file e.g.
``package>=1.0,<2.0``.

.. code:: bash

pip install tableschema-sql

Examples
~~~~~~~~

Code examples in this readme requires Python 3.3+ interpreter. You could
see even more example in
`examples <https://github.com/frictionlessdata/tableschema-sql-py/tree/master/examples>`__
directory.

.. code:: python

from tableschema import Table
from sqlalchemy import create_engine

# Load and save table to SQL
engine = create_engine('sqlite://')
table = Table('data.csv', schema='schema.json')
table.save('data', storage='sql', engine=engine)

Documentation
-------------

The whole public API of this package is described here and follows
semantic versioning rules. Everyting outside of this readme are private
API and could be changed without any notification on any new version.

Storage
~~~~~~~

Package implements `Tabular
Storage <https://github.com/frictionlessdata/tableschema-py#storage>`__
interface (see full documentation on the link):

|Storage|

This driver provides an additional API:

``Storage(engine, dbschema=None, prefix='', reflect_only=None, autoincrement=False)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- ``engine (object)`` - ``sqlalchemy`` engine
- ``dbschema (str)`` - name of database schema
- ``prefix (str)`` - prefix for all buckets
- ``reflect_only (callable)`` - a boolean predicate to filter the list
of table names when reflecting
- ``autoincrement (bool)`` - add autoincrement column at the beginning

``storage.create(..., indexes_fields=None)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- ``indexes_fields (str[])`` - list of tuples containing field names,
or list of such lists

``storage.write(..., keyed=False, as_generator=False, update_keys=None)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- ``keyed (bool)`` - accept keyed rows
- ``as_generator (bool)`` - returns generator to provide writing
control to the client
- ``update_keys (str[])`` - update instead of inserting if key values
match existent rows

Contributing
------------

The project follows the `Open Knowledge International coding
standards <https://github.com/okfn/coding-standards>`__.

| Recommended way to get started is to create and activate a project
virtual environment.
| To install package and development dependencies into active
environment:

::

$ make install

To run tests with linting and coverage:

.. code:: bash

$ make test

| For linting ``pylama`` configured in ``pylama.ini`` is used. On this
stage it's already
| installed into your environment and could be used separately with more
fine-grained control
| as described in documentation -
https://pylama.readthedocs.io/en/latest/.

For example to sort results by error type:

.. code:: bash

$ pylama --sort <path>

| For testing ``tox`` configured in ``tox.ini`` is used.
| It's already installed into your environment and could be used
separately with more fine-grained control as described in documentation
- https://testrun.org/tox/latest/.

| For example to check subset of tests against Python 2 environment with
increased verbosity.
| All positional arguments and options after ``--`` will be passed to
``py.test``:

.. code:: bash

tox -e py27 -- -v tests/<path>

| Under the hood ``tox`` uses ``pytest`` configured in ``pytest.ini``,
``coverage``
| and ``mock`` packages. This packages are available only in tox
envionments.

Changelog
---------

Here described only breaking and the most important changes. The full
changelog and documentation for all released versions could be found in
nicely formatted `commit
history <https://github.com/frictionlessdata/tableschema-sql-py/commits/master>`__.

v0.x
~~~~

Initial driver implementation.

.. |Travis| image:: https://img.shields.io/travis/frictionlessdata/tableschema-sql-py/master.svg
:target: https://travis-ci.org/frictionlessdata/tableschema-sql-py
.. |Coveralls| image:: http://img.shields.io/coveralls/frictionlessdata/tableschema-sql-py/master.svg
:target: https://coveralls.io/r/frictionlessdata/tableschema-sql-py?branch=master
.. |PyPi| image:: https://img.shields.io/pypi/v/tableschema-sql.svg
:target: https://pypi-hypernode.com/pypi/tableschema-sql
.. |Gitter| image:: https://img.shields.io/gitter/room/frictionlessdata/chat.svg
:target: https://gitter.im/frictionlessdata/chat
.. |Storage| image:: https://i.imgur.com/RQgrxqp.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tableschema-sql-0.10.2.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

tableschema_sql-0.10.2-py2.py3-none-any.whl (13.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tableschema-sql-0.10.2.tar.gz.

File metadata

File hashes

Hashes for tableschema-sql-0.10.2.tar.gz
Algorithm Hash digest
SHA256 e4e3d93bc84a84ac30e14c5aaae85b79a76b6e57a4a97d27c8fcd18ac0912c2f
MD5 0ca2df4afcf45a5728078293773ad987
BLAKE2b-256 fe964df4dbf69fa79a0ea1e0330b18058ba607ac8ea3e4d03df2f6567a2553b4

See more details on using hashes here.

Provenance

File details

Details for the file tableschema_sql-0.10.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for tableschema_sql-0.10.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1e55e222069c78e3de652fb72a6859d49de8d7a611fb9f9a9421136aeffb9b04
MD5 fb0f8c28c2e71aa4f6f9e0157e71046a
BLAKE2b-256 176c69029863cbd8e71d2826df65e807874b297a47f67f76b0d7f2e53be669dd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page