Skip to main content

Generate SQL tables, load and extract data, based on JSON Table Schema descriptors.

Project description

tableschema-sql-py
==================

| |Travis|
| |Coveralls|
| |PyPi|
| |Gitter|

Generate and load SQL tables based on `Table
Schema <http://specs.frictionlessdata.io/table-schema/>`__ descriptors.

Features
--------

- implements ``tableschema.Storage`` interface
- provides additional features like indexes and updating

Getting Started
---------------

Installation
~~~~~~~~~~~~

The package use semantic versioning. It means that major versions could
include breaking changes. It's highly recommended to specify ``package``
version range in your ``setup/requirements`` file e.g.
``package>=1.0,<2.0``.

.. code:: bash

pip install tableschema-sql

Examples
~~~~~~~~

Code examples in this readme requires Python 3.3+ interpreter. You could
see even more example in
`examples <https://github.com/frictionlessdata/tableschema-sql-py/tree/master/examples>`__
directory.

.. code:: python

from tableschema import Table
from sqlalchemy import create_engine

# Load and save table to SQL
engine = create_engine('sqlite://')
table = Table('data.csv', schema='schema.json')
table.save('data', storage='sql', engine=engine)

Documentation
-------------

The whole public API of this package is described here and follows
semantic versioning rules. Everyting outside of this readme are private
API and could be changed without any notification on any new version.

Storage
~~~~~~~

Package implements `Tabular
Storage <https://github.com/frictionlessdata/tableschema-py#storage>`__
interface (see full documentation on the link):

|Storage|

This driver provides an additional API:

``Storage(engine, dbschema=None, prefix='', reflect_only=None, autoincrement=False)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- ``engine (object)`` - ``sqlalchemy`` engine
- ``dbschema (str)`` - name of database schema
- ``prefix (str)`` - prefix for all buckets
- ``reflect_only (callable)`` - a boolean predicate to filter the list
of table names when reflecting
- ``autoincrement (bool)`` - add autoincrement column at the beginning

``storage.create(..., indexes_fields=None)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- ``indexes_fields (str[])`` - list of tuples containing field names,
or list of such lists

``storage.write(..., keyed=False, as_generator=False, update_keys=None)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- ``keyed (bool)`` - accept keyed rows
- ``as_generator (bool)`` - returns generator to provide writing
control to the client
- ``update_keys (str[])`` - update instead of inserting if key values
match existent rows

Contributing
------------

The project follows the `Open Knowledge International coding
standards <https://github.com/okfn/coding-standards>`__.

| Recommended way to get started is to create and activate a project
virtual environment.
| To install package and development dependencies into active
environment:

::

$ make install

To run tests with linting and coverage:

.. code:: bash

$ make test

| For linting ``pylama`` configured in ``pylama.ini`` is used. On this
stage it's already
| installed into your environment and could be used separately with more
fine-grained control
| as described in documentation -
https://pylama.readthedocs.io/en/latest/.

For example to sort results by error type:

.. code:: bash

$ pylama --sort <path>

| For testing ``tox`` configured in ``tox.ini`` is used.
| It's already installed into your environment and could be used
separately with more fine-grained control as described in documentation
- https://testrun.org/tox/latest/.

| For example to check subset of tests against Python 2 environment with
increased verbosity.
| All positional arguments and options after ``--`` will be passed to
``py.test``:

.. code:: bash

tox -e py27 -- -v tests/<path>

| Under the hood ``tox`` uses ``pytest`` configured in ``pytest.ini``,
``coverage``
| and ``mock`` packages. This packages are available only in tox
envionments.

Changelog
---------

Here described only breaking and the most important changes. The full
changelog and documentation for all released versions could be found in
nicely formatted `commit
history <https://github.com/frictionlessdata/tableschema-sql-py/commits/master>`__.

v0.x
~~~~

Initial driver implementation.

.. |Travis| image:: https://img.shields.io/travis/frictionlessdata/tableschema-sql-py/master.svg
:target: https://travis-ci.org/frictionlessdata/tableschema-sql-py
.. |Coveralls| image:: http://img.shields.io/coveralls/frictionlessdata/tableschema-sql-py/master.svg
:target: https://coveralls.io/r/frictionlessdata/tableschema-sql-py?branch=master
.. |PyPi| image:: https://img.shields.io/pypi/v/tableschema-sql.svg
:target: https://pypi-hypernode.com/pypi/tableschema-sql
.. |Gitter| image:: https://img.shields.io/gitter/room/frictionlessdata/chat.svg
:target: https://gitter.im/frictionlessdata/chat
.. |Storage| image:: https://i.imgur.com/RQgrxqp.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tableschema-sql-0.10.3.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

tableschema_sql-0.10.3-py2.py3-none-any.whl (13.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tableschema-sql-0.10.3.tar.gz.

File metadata

File hashes

Hashes for tableschema-sql-0.10.3.tar.gz
Algorithm Hash digest
SHA256 c6c2490227ac2de1f8275d306e23448f146c918fea5021616227c068ddb9ce2a
MD5 2b506e56a14e2b7f2c6cd9513216fde4
BLAKE2b-256 09c76b6bddbee20fa12144d422c867234ad1b57fb97060fc2bb9a0c19fb1c833

See more details on using hashes here.

Provenance

File details

Details for the file tableschema_sql-0.10.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for tableschema_sql-0.10.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d3424e3c6c454fd79f37906496e53a94087df51132daaa46c581fa125797170a
MD5 44847c59723ebb664bbd786b90e2630e
BLAKE2b-256 8f3b9cb0ac9e893650a6f9d025e4f6f85034d7a28eb45262262773e5b2a08e41

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page