Skip to main content

A utility library for working with Table Schema in Python

Project description

Travis
Coveralls
PyPi
SemVer
Gitter

A library for working with Table Schema in Python.

Features

  • Table to work with data tables described by Table Schema

  • Schema representing Table Schema

  • Field representing Table Schema field

  • validate to validate Table Schema

  • infer to infer Table Schema from data

  • built-in command-line interface to validate and infer schemas

  • storage/plugins system to connect tables to different storage backends like SQL Database

Important Notes

  • There are BREAKING changes in v1 (pre-release):

  • package on PyPi has been renamed to tableschema

  • following deprecated API has been removed the package:

    • tableschema.push/pull_resource (use tableschema.Table)

    • tableschema.Validator (use tableschema.validate)

    • tableschema.storage (use tableschema.Storage)

    • tableschema.model (use tableschema.Schema)

    • tableschema.types (use tableschema.Field)

  • rebased on Table Schema v1 null/types/constraints symantics

  • Field.cast/test_value now accepts constraints=bool/list argument instead of skip_constraints=bool and constraint=str

  • other changes could be introduced before final release

  • documentation for previous release (v0.10) could be found here

  • There are deprecating changes in v0.7:

  • renewed API has been introduced in non breaking manner

  • documentation for deprecated API could be found here

Gettings Started

Installation

$ pip install jsontableschema # v0.10
$ pip install tableschema --pre # v1.0-alpha

Example

from tableschema import Table

# Create table
table = Table('path.csv', schema='schema.json')

# Print schema descriptor
print(table.schema.descriptor)

# Print cast rows in a dict form
for keyed_row in table.iter(keyed=True):
    print(keyed_row)

Table

Table represents data described by Table Schema:

# pip install sqlalchemy tableschema-sql
import sqlalchemy as sa
from pprint import pprint
from tableschema import Table

# Data source
SOURCE = 'https://raw.githubusercontent.com/frictionlessdata/tableschema-py/master/data/data_infer.csv'

# Create SQL database
db = sa.create_engine('sqlite://')

# Data processor
def skip_under_30(erows):
    for number, headers, row in erows:
        krow = dict(zip(headers, row))
        if krow['age'] >= 30:
            yield (number, headers, row)

# Work with table
table = Table(SOURCE, post_cast=[skip_under_30])
table.schema.save('tmp/persons.json') # Save INFERRED schema
table.save('persons', backend='sql', engine=db) # Save data to SQL
table.save('tmp/persons.csv')  # Save data to DRIVE

# Check the result
pprint(Table('persons', backend='sql', engine=db).read(keyed=True))
pprint(Table('tmp/persons.csv').read(keyed=True))
# Will print (twice)
# [{'age': 39, 'id': 1, 'name': 'Paul'},
#  {'age': 36, 'id': 3, 'name': 'Jane'}]

Schema

A model of a schema with helpful methods for working with the schema and supported data. Schema instances can be initialized with a schema source as a filepath or url to a JSON file, or a Python dict. The schema is initially validated (see validate below), and will raise an exception if not a valid Table Schema.

from tableschema import Schema

# Init schema
schema = Schema('path.json')

# Cast a row
schema.cast_row(['12345', 'a string', 'another field'])

Methods available to Schema instances:

  • descriptor - return schema descriptor

  • fields - an array of the schema’s Field instances

  • headers - an array of the schema headers

  • primary_key - the primary key field for the schema as an array

  • foreignKey - the foreign key property for the schema as an array

  • get_field(name) - return the field object for given name

  • has_field(name) - return a bool if the field exists in the schema

  • cast_row(row, no_fail_fast=False) - return row cast against schema

  • save(target) - save schema to filesystem

Where the option no_fail_fast is given, it will collect all errors it encouters and an exceptions.MultipleInvalid will be raised (if there are errors).

Field

from tableschema import Field

# Init field
field = Field({'name': 'name', type': 'number'})

# Cast a value
field.cast_value('12345') # -> 12345

Data values can be cast to native Python objects with a Field instance. Type instances can be initialized with field descriptors. This allows formats and constraints to be defined.

Casting a value will check the value is of the expected type, is in the correct format, and complies with any constraints imposed by a schema. E.g. a date value (in ISO 8601 format) can be cast with a DateType instance. Values that can’t be cast will raise an InvalidCastError exception.

Casting a value that doesn’t meet the constraints will raise a ConstraintError exception.

validate

Given a schema as JSON file, url to JSON file, or a Python dict, validate returns True for a valid Table Schema, or raises an exception, SchemaValidationError. It validates only schema, not data against schema!

import io
import json

from tableschema import validate

with io.open('schema_to_validate.json') as stream:
    descriptor = json.load(stream)

try:
    tableschema.validate(descriptor)
except tableschema.exceptions.SchemaValidationError as exception:
   # handle error

It may be useful to report multiple errors when validating a schema. This can be done with no_fail_fast flag set to True.

try:
    tableschema.validate(descriptor, no_fail_fast=True)
except tableschema.exceptions.MultipleInvalid as exception:
    for error in exception.errors:
        # handle error

infer

Given headers and data, infer will return a Table Schema as a Python dict based on the data values. Given the data file, data_to_infer.csv:

id,age,name
1,39,Paul
2,23,Jimmy
3,36,Jane
4,28,Judy

Call infer with headers and values from the datafile:

import io
import csv

from tableschema import infer

filepath = 'data_to_infer.csv'
with io.open(filepath) as stream:
    headers = stream.readline().rstrip('\n').split(',')
    values = csv.reader(stream)

schema = infer(headers, values)

schema is now a schema dict:

{u'fields': [
    {
        u'description': u'',
        u'format': u'default',
        u'name': u'id',
        u'title': u'',
        u'type': u'integer'
    },
    {
        u'description': u'',
        u'format': u'default',
        u'name': u'age',
        u'title': u'',
        u'type': u'integer'
    },
    {
        u'description': u'',
        u'format': u'default',
        u'name': u'name',
        u'title': u'',
        u'type': u'string'
    }]
}

The number of rows used by infer can be limited with the row_limit argument.

CLI

It’s a provisional API excluded from SemVer. If you use it as a part of other program please pin concrete goodtables version to your requirements file.

Table Schema features a CLI called tableschema. This CLI exposes the infer and validate functions for command line use.

Example of validate usage:

$ tableschema validate path/to-schema.json

Example of infer usage:

$ tableschema infer path/to/data.csv

The response is a schema as JSON. The optional argument --encoding allows a character encoding to be specified for the data file. The default is utf-8.

Storage

The library includes interface declaration to implement tabular Storage:

Storage

An implementor should follow tableschema.Storage interface to write his own storage backend. This backend could be used with Table class. See plugins system below to know how to integrate custom storage plugin.

plugins

Table Schema has a plugin system. Any package with the name like tableschema_<name> could be imported as:

from tableschema.plugins import <name>

If a plugin is not installed ImportError will be raised with a message describing how to install the plugin.

A list of officially supported plugins:

API Reference

Snapshot

Table(source, schema=None, post_cast=None, backend=None, **options)
    stream -> tabulator.Stream
    schema -> Schema
    name -> str
    iter(keyed/extended=False) -> (generator) (keyed/extended)row[]
    read(keyed/extended=False, limit=None) -> (keyed/extended)row[]
    save(target, backend=None, **options)
Schema(descriptor)
    descriptor -> dict
    fields -> Field[]
    headers -> str[]
    primary_key -> str[]
    foreign_keys -> str[]
    get_field(name) -> Field
    has_field(name) -> bool
    cast_row(row, no_fail_fast=False) -> row
    save(target)
Field(descriptor)
    descriptor -> dict
    name -> str
    type -> str
    format -> str
    constraints -> dict
    cast_value(value, constraints=True) -> value
    test_value(value, constraints=True) -> bool
validate(descriptor, no_fail_fast=False) -> bool
infer(headers, values) -> descriptor
exceptions
~cli
---
Storage(**options)
    buckets -> str[]
    create(bucket, descriptor, force=False)
    delete(bucket=None, ignore=False)
    describe(bucket, descriptor=None) -> descriptor
    iter(bucket) -> (generator) row[]
    read(bucket) -> row[]
    write(bucket, rows)
plugins

Detailed

Contributing

Please read the contribution guideline:

How to Contribute

Thanks!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tableschema-1.0.0a8.tar.gz (56.4 kB view hashes)

Uploaded Source

Built Distribution

tableschema-1.0.0a8-py2.py3-none-any.whl (55.3 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page