Skip to main content

Format agnostic tabular data library (XLS, JSON, YAML, CSV)

Project description

https://travis-ci.org/kennethreitz/tablib.svg?branch=master
_____         ______  ___________ ______
__  /_______ ____  /_ ___  /___(_)___  /_
_  __/_  __ `/__  __ \__  / __  / __  __ \
/ /_  / /_/ / _  /_/ /_  /  _  /  _  /_/ /
\__/  \__,_/  /_.___/ /_/   /_/   /_.___/

Tablib is a format-agnostic tabular dataset library, written in Python.

Output formats supported:

  • Excel (Sets + Books)

  • JSON (Sets + Books)

  • YAML (Sets + Books)

  • Pandas DataFrames (Sets)

  • HTML (Sets)

  • TSV (Sets)

  • OSD (Sets)

  • CSV (Sets)

  • DBF (Sets)

Note that tablib purposefully excludes XML support. It always will. (Note: This is a joke. Pull requests are welcome.)

Overview

tablib.Dataset()

A Dataset is a table of tabular data. It may or may not have a header row. They can be build and manipulated as raw Python datatypes (Lists of tuples|dictionaries). Datasets can be imported from JSON, YAML, DBF, and CSV; they can be exported to XLSX, XLS, ODS, JSON, YAML, DBF, CSV, TSV, and HTML.

tablib.Databook()

A Databook is a set of Datasets. The most common form of a Databook is an Excel file with multiple spreadsheets. Databooks can be imported from JSON and YAML; they can be exported to XLSX, XLS, ODS, JSON, and YAML.

Usage

Populate fresh data files:

headers = ('first_name', 'last_name')

data = [
    ('John', 'Adams'),
    ('George', 'Washington')
]

data = tablib.Dataset(*data, headers=headers)

Intelligently add new rows:

>>> data.append(('Henry', 'Ford'))

Intelligently add new columns:

>>> data.append_col((90, 67, 83), header='age')

Slice rows:

>>> print(data[:2])
[('John', 'Adams', 90), ('George', 'Washington', 67)]

Slice columns by header:

>>> print(data['first_name'])
['John', 'George', 'Henry']

Easily delete rows:

>>> del data[1]

Exports

Drumroll please………..

JSON!

>>> print(data.export('json'))
[
  {
    "last_name": "Adams",
    "age": 90,
    "first_name": "John"
  },
  {
    "last_name": "Ford",
    "age": 83,
    "first_name": "Henry"
  }
]

YAML!

>>> print(data.export('yaml'))
- {age: 90, first_name: John, last_name: Adams}
- {age: 83, first_name: Henry, last_name: Ford}

CSV…

>>> print(data.export('csv'))
first_name,last_name,age
John,Adams,90
Henry,Ford,83

EXCEL!

>>> with open('people.xls', 'wb') as f:
...     f.write(data.export('xls'))

DBF!

>>> with open('people.dbf', 'wb') as f:
...     f.write(data.export('dbf'))

Pandas DataFrame!

>>> print(data.export('df')):
      first_name last_name  age
0       John     Adams   90
1      Henry      Ford   83

It’s that easy.

Installation

To install tablib, simply:

$ pip install tablib

Make sure to check out Tablib on PyPi!

Contribute

If you’d like to contribute, simply fork the repository, commit your changes to the develop branch (or branch off of it), and send a pull request. Make sure you add yourself to AUTHORS.

History

0.11.5 (2017-06-13)

  • Use yaml.safe_load for importing yaml.

0.11.4 (2017-01-23)

  • Use built-in json package if available

  • Support Python 3.5+ in classifiers

** Bugfixes **

  • Fixed textual representation for Dataset with no headers

  • Handle decimal types

0.11.3 (2016-02-16)

  • Release fix.

0.11.2 (2016-02-16)

Bugfixes

  • Fix export only formats.

  • Fix for xlsx output.

0.11.1 (2016-02-07)

Bugfixes

  • Fixed packaging error on Python 3.

0.11.0 (2016-02-07)

New Formats!

  • Added LaTeX table export format (Dataset.latex).

  • Support for dBase (DBF) files (Dataset.dbf).

Improvements

  • New import/export interface (Dataset.export(), Dataset.load()).

  • CSV custom delimiter support (Dataset.export('csv', delimiter='$')).

  • Adding ability to remove duplicates to all rows in a dataset (Dataset.remove_duplicates()).

  • Added a mechanism to avoid datetime.datetime issues when serializing data.

  • New detect_format() function (mostly for internal use).

  • Update the vendored unicodecsv to fix None handling.

  • Only freeze the headers row, not the headers columns (xls).

Breaking Changes

  • detect() function removed.

Bugfixes

  • Fix XLSX import.

  • Bugfix for Dataset.transpose().transpose().

0.10.0 (2014-05-27)

  • Unicode Column Headers

  • ALL the bugfixes!

0.9.11 (2011-06-30)

  • Bugfixes

0.9.10 (2011-06-22)

  • Bugfixes

0.9.9 (2011-06-21)

  • Dataset API Changes

  • stack_rows => stack, stack_columns => stack_cols

  • column operations have their own methods now (append_col, insert_col)

  • List-style pop()

  • Redis-style rpush, lpush, rpop, lpop, rpush_col, and lpush_col

0.9.8 (2011-05-22)

  • OpenDocument Spreadsheet support (.ods)

  • Full Unicode TSV support

0.9.7 (2011-05-12)

  • Full XLSX Support!

  • Pickling Bugfix

  • Compat Module

0.9.6 (2011-05-12)

  • seperators renamed to separators

  • Full unicode CSV support

0.9.5 (2011-03-24)

  • Python 3.1, Python 3.2 Support (same code base!)

  • Formatter callback support

  • Various bug fixes

0.9.4 (2011-02-18)

  • Python 2.5 Support!

  • Tox Testing for 2.5, 2.6, 2.7

  • AnyJSON Integrated

  • OrderedDict support

  • Caved to community pressure (spaces)

0.9.3 (2011-01-31)

  • Databook duplication leak fix.

  • HTML Table output.

  • Added column sorting.

0.9.2 (2010-11-17)

  • Transpose method added to Datasets.

  • New frozen top row in Excel output.

  • Pickling support for Datasets and Rows.

  • Support for row/column stacking.

0.9.1 (2010-11-04)

  • Minor reference shadowing bugfix.

0.9.0 (2010-11-04)

  • Massive documentation update!

  • Tablib.org!

  • Row tagging and Dataset filtering!

  • Column insert/delete support

  • Column append API change (header required)

  • Internal Changes (Row object and use thereof)

0.8.5 (2010-10-06)

  • New import system. All dependencies attempt to load from site-packages, then fallback on tenderized modules.

0.8.4 (2010-10-04)

  • Updated XLS output: Only wrap if ‘\n’ in cell.

0.8.3 (2010-10-04)

  • Ability to append new column passing a callable as the value that will be applied to every row.

0.8.2 (2010-10-04)

  • Added alignment wrapping to written cells.

  • Added separator support to XLS.

0.8.1 (2010-09-28)

  • Packaging Fix

0.8.0 (2010-09-25)

  • New format plugin system!

  • Imports! ELEGANT Imports!

  • Tests. Lots of tests.

0.7.1 (2010-09-20)

  • Reverting methods back to properties.

  • Windows bug compensated in documentation.

0.7.0 (2010-09-20)

  • Renamed DataBook Databook for consistency.

  • Export properties changed to methods (XLS filename / StringIO bug).

  • Optional Dataset.xls(path=’filename’) support (for writing on windows).

  • Added utf-8 on the worksheet level.

0.6.4 (2010-09-19)

  • Updated unicode export for XLS.

  • More exhaustive unit tests.

0.6.3 (2010-09-14)

  • Added Dataset.append() support for columns.

0.6.2 (2010-09-13)

  • Fixed Dataset.append() error on empty dataset.

  • Updated Dataset.headers property w/ validation.

  • Added Testing Fixtures.

0.6.1 (2010-09-12)

  • Packaging hotfixes.

0.6.0 (2010-09-11)

  • Public Release.

  • Export Support for XLS, JSON, YAML, and CSV.

  • DataBook Export for XLS, JSON, and YAML.

  • Python Dict Property Support.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tablib-0.12.1.tar.gz (63.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page