Format agnostic tabular data library (XLS, CSV, JSON, YAML, CSV)
Project description
Tablib: format-agnostic tabular dataset library
_____ ______ ___________ ______ __ /_______ ____ /_ ___ /___(_)___ /_ _ __/_ __ `/__ __ \__ / __ / __ __ \ / /_ / /_/ / _ /_/ /_ / _ / _ /_/ / \__/ \__,_/ /_.___/ /_/ /_/ /_.___/
Tablib is a format-agnostic tabular dataset library, written in Python. It is a full python module which doubles as a CLI application for quick dataset conversions.
Formats supported:
JSON
YAML
Excel
CSV
At this time, Tablib supports the export of it’s powerful Dataset object instances into any of the above formats. Import is underway.
Please note that tablib purposefully excludes XML support. It always will.
Features
Populate fresh data files:
headers = ('first_name', 'last_name', 'gpa') data = [ ('John', 'Adams', 4.0), ('George', 'Washington', 2.6), ('Henry', 'Ford', 2.3) ] data = tablib.Dataset(*data, headers=headers) # Establish file location and save data.save('test.xls')
Intelligently add new rows:
data.append('Bob', 'Dylan', 3.2) print data.headers # >>> ('first_name', 'last_name', 'gpa')
Slice rows:
print data[0:1] # >>> [('John', 'Adams', 4.0), ('George', 'Washington', 2.6)]
Slice columns by header:
print data['first_name'] # >>> ['John', 'George', 'Henry']
Manipulate rows by index:
del data[0] print data[0:1] # >>> [('George', 'Washington', 2.6), ('Henry', 'Ford', 2.3)]
Roadmap
Import datasets from CSV, JSON, YAML
Auto-detect import format
Plugin support
History
0.6.0 (2010-09-11)
Public Release.
Export Support for XLS, JSON, YAML, and CSV.
DataBook Export for XLS, JSON, and YAML.
Python Dict Property Support.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.