Skip to main content

Format agnostic tabular data library (XLS, JSON, YAML, CSV)

Project description

Tablib: format-agnostic tabular dataset library

_____         ______  ___________ ______
__  /_______ ____  /_ ___  /___(_)___  /_
_  __/_  __ `/__  __ \__  / __  / __  __ \
/ /_  / /_/ / _  /_/ /_  /  _  /  _  /_/ /
\__/  \__,_/  /_.___/ /_/   /_/   /_.___/

Tablib is a format-agnostic tabular dataset library, written in Python.

Output formats supported:

  • Excel

  • JSON

  • YAML

  • CSV

At this time, Tablib supports the export of it’s powerful Dataset object instances into any of the above formats. Import is underway.

Note that tablib purposefully excludes XML support. It always will.

Usage

Populate fresh data files:

headers = ('first_name', 'last_name')

data = [
    ('John', 'Adams'),
    ('George', 'Washington')
]

data = tablib.Dataset(*data, headers=headers)

Intelligently add new rows:

>>> data.append(('Henry', 'Ford'))

Intelligently add new columns:

>>> data.append(col=('age', 90, 67, 83))

Slice rows:

>>> print data[:2]
[('John', 'Adams', 90), ('George', 'Washington', 67)]

Slice columns by header:

>>> print data['first_name']
['John', 'George', 'Henry']

Easily delete rows:

>>> del data[1]

Drumroll please………..

JSON!

>>> print data.json
[
  {
    "last_name": "Adams",
    "age": 90,
    "first_name": "John"
  },
  {
    "last_name": "Ford",
    "age": 83,
    "first_name": "Henry"
  }
]

YAML!

>>> print data.yaml
- {age: 90, first_name: John, last_name: Adams}
- {age: 83, first_name: Henry, last_name: Ford}

CSV…

>>> print data.csv
first_name,last_name,age
John,Adams,90
Henry,Ford,83

EXCEL!

>>> open('people.xls', 'wb').write(data.xls)

It’s that easy.

Installation

To install tablib, simply:

$ pip install tablib

Or, if you absolutely must:

$ easy_install tablib

Contribute

If you’d like to contribute, simply fork the repository, commit your changes to the develop branch (or branch off of it), and send a pull request. Make sure you add yourself to AUTHORS.

Roadmap

  • Import datasets from CSV, JSON, YAML

  • Release CLI Interface

  • Auto-detect import format

  • Add possible other exports (SQL?)

  • Possibly plugin-ify format architecture

  • Ability to assign types to rows (set, regex=, &c.)

  • Plugin support

History

0.7.1 (2010-09-20)

  • Reverting methods back to properties.

  • Windows bug compenated in documentation.

0.7.0 (2010-09-20)

  • Renamed DataBook Databook for consistiency.

  • Export properties changed to methods (XLS filename / StringIO bug).

  • Optional Dataset.xls(path=’filename’) support (for writing on windows).

  • Added utf-8 on the worksheet level.

0.6.4 (2010-09-19)

  • Updated unicode export for XLS.

  • More exhaustive unit tests.

0.6.3 (2010-09-14)

  • Added Dataset.append() support for columns.

0.6.2 (2010-09-13)

  • Fixed Dataset.append() error on empty dataset.

  • Updated Dataset.headers property w/ validation.

  • Added Testing Fixtures.

0.6.1 (2010-09-12)

  • Packaging hotfixes.

0.6.0 (2010-09-11)

  • Public Release.

  • Export Support for XLS, JSON, YAML, and CSV.

  • DataBook Export for XLS, JSON, and YAML.

  • Python Dict Property Support.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tablib-0.7.1.tar.gz (9.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page