Skip to main content

A wrapper for connecting to RabbitMQ which constrains clients to a single purpose channel (producer or consumer) with healing for intermittent connectivity.

Project description

codecov

talus (noun) - ta·​lus | ˈtā-ləs: a slope formed especially by an accumulation of rock debris; Occasional habitat of the pika.

A wrapper for connecting to RabbitMQ which constrains clients to a single purpose channel (producer or consumer) with healing for intermittent connectivity.

Features

  • Guided separation of connections for producers and consumers

  • Re-establish connections to the server when lost

  • Constrained interface to support simple produce / consume use cases for direct exchanges

Installation

pip install talus

Examples

Creating a consumer which listens on a queue, processes valid messages and publishes as part of processing

Uses default connection parameters and connection retryer expecting a rabbitmq server running in its default configuration.

from talus import DurableConsumer
from talus import DurableProducer
from talus import ConnectionRetryerFactory
from talus import ConsumerConnectionParameterFactory, ProducerConnectionParameterFactory
from talus import MessageProcessorBase
from talus import ConsumeMessageBase, PublishMessageBase, MessageBodyBase
from talus import Queue
from talus import Exchange
from talus import Binding
from typing import Type

##########################
# Consumer Configurations#
##########################
# Configure messages that will be consumed
class ConsumeMessageBody(MessageBodyBase):
    objectName: str
    bucket: str

class ConsumeMessage(ConsumeMessageBase):
    message_body_cls: Type[ConsumeMessageBody] = ConsumeMessageBody

# Configure the queue the messages should be consumed from
inbound_queue = Queue(name="inbound.q")


###########################
# Producer Configurations #
###########################
# Configure messages that will be produced
class ProducerMessageBody(MessageBodyBase):
    key: str
    code: str

class PublishMessage(PublishMessageBase):
    message_body_cls: Type[ProducerMessageBody] = ProducerMessageBody
    default_routing_key: str = "outbound.message.m"

# Configure the queues the message should be routed to
outbound_queue_one = Queue(name="outbound.one.q")
outbound_queue_two = Queue(name="outbound.two.q")


# Configure the exchange and queue bindings for publishing (Publish Message -> Outbound Queues)
publish_exchange = Exchange(name="outbound.exchange") # Direct exchange by default
bindings = [Binding(queue=outbound_queue_one, message=PublishMessage),
            Binding(queue=outbound_queue_two, message=PublishMessage)] # publishing PublishMessage will route to both queues.


############################
# Processor Configurations #
############################

# Configure a message processor to handle the consumed messages
class MessageProcessor(MessageProcessorBase):
    def process_message(self, message: ConsumeMessage):
        print(message)
        outbound_message = PublishMessage(
            body=ProducerMessageBody(
                key=message.body.objectName,
                code="newBucket",
                conversationId=message.body.conversationId,
            )
        )  # crosswalk the values from the consumed message to the produced message
        self.producer.publish(outbound_message)
        print(outbound_message)


# Actually Connect and run the consumer
def main():
    """Starts a listener which will consume messages from the inbound queue and publish messages to the outbound queues."""
    with DurableProducer(
        queue_bindings=bindings,
        publish_exchange=publish_exchange,
        connection_parameters=ProducerConnectionParameterFactory(),
        connection_retryer=ConnectionRetryerFactory(),
    ) as producer:
        with DurableConsumer(
            consume_queue=inbound_queue,
            connection_parameters=ConsumerConnectionParameterFactory(),
            connection_retryer=ConnectionRetryerFactory(),
        ) as consumer:
            message_processor = MessageProcessor(message_cls=ConsumeMessage, producer=producer)
            consumer.listen(message_processor)


if __name__ == "__main__":
    # First message to consume
    class InitialMessage(PublishMessageBase):
        message_body_cls: Type[
            ConsumeMessageBody] = ConsumeMessageBody
        default_routing_key: str = "inbound.message.m"

    initial_message_bindings = [Binding(queue=inbound_queue, message=InitialMessage)]

    with DurableProducer(
            queue_bindings=initial_message_bindings,
            publish_exchange=publish_exchange,
            connection_parameters=ProducerConnectionParameterFactory(),
            connection_retryer=ConnectionRetryerFactory(),
    ) as producer:
        producer.publish(InitialMessage(body={"objectName": "object", "bucket": "bucket"}))
    # Consume the message and process it
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

talus-1.1.0.tar.gz (22.3 kB view details)

Uploaded Source

Built Distribution

talus-1.1.0-py3-none-any.whl (25.7 kB view details)

Uploaded Python 3

File details

Details for the file talus-1.1.0.tar.gz.

File metadata

  • Download URL: talus-1.1.0.tar.gz
  • Upload date:
  • Size: 22.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for talus-1.1.0.tar.gz
Algorithm Hash digest
SHA256 b284f8426711308a4c4ef573306236477936d15d72132700e1f80685d1c841e5
MD5 11d7342ba333adaa857eb1508db28d19
BLAKE2b-256 77a0d3424e55c4fbed8d291bd957b3b658737f5221ba4f9eb79e1b52461bb1a9

See more details on using hashes here.

Provenance

File details

Details for the file talus-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: talus-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 25.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for talus-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 64fac7a9dbd503d02833b986a11ef7cecd33854d36f77e2f03d897fe9658f4b1
MD5 13a7b792fa8aa3232a535ec9987fa871
BLAKE2b-256 218ab3b39e5779a6037a8802d5691ca849311843a2d4a7a0b9e23175f7bf4de8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page