Skip to main content

A wrapper for connecting to RabbitMQ which constrains clients to a single purpose channel (producer or consumer) with healing for intermittent connectivity.

Project description

codecov

talus (noun) - ta·​lus | ˈtā-ləs: a slope formed especially by an accumulation of rock debris; Occasional habitat of the pika.

A wrapper for connecting to RabbitMQ which constrains clients to a single purpose channel (producer or consumer) with healing for intermittent connectivity.

Features

  • Guided separation of connections for producers and consumers

  • Re-establish connections to the server when lost

  • Constrained interface to support simple produce / consume use cases for direct exchanges

Installation

pip install talus

Examples

Creating a consumer which listens on a queue, processes valid messages and publishes as part of processing

Uses default connection parameters and connection retryer expecting a rabbitmq server running in its default configuration.

from talus import DurableConsumer
from talus import DurableProducer
from talus import ConnectionRetryerFactory
from talus import ConsumerConnectionParameterFactory, ProducerConnectionParameterFactory
from talus import MessageProcessorBase
from talus import ConsumeMessageBase, PublishMessageBase, MessageBodyBase
from talus import Queue
from talus import Exchange
from talus import Binding
from typing import Type

##########################
# Consumer Configurations#
##########################
# Configure messages that will be consumed
class ConsumeMessageBody(MessageBodyBase):
    objectName: str
    bucket: str

class ConsumeMessage(ConsumeMessageBase):
    message_body_cls: Type[ConsumeMessageBody] = ConsumeMessageBody

# Configure the queue the messages should be consumed from
inbound_queue = Queue(name="inbound.q")


###########################
# Producer Configurations #
###########################
# Configure messages that will be produced
class ProducerMessageBody(MessageBodyBase):
    key: str
    code: str

class PublishMessage(PublishMessageBase):
    message_body_cls: Type[ProducerMessageBody] = ProducerMessageBody
    default_routing_key: str = "outbound.message.m"

# Configure the queues the message should be routed to
outbound_queue_one = Queue(name="outbound.one.q")
outbound_queue_two = Queue(name="outbound.two.q")


# Configure the exchange and queue bindings for publishing (Publish Message -> Outbound Queues)
publish_exchange = Exchange(name="outbound.exchange") # Direct exchange by default
bindings = [Binding(queue=outbound_queue_one, message=PublishMessage),
            Binding(queue=outbound_queue_two, message=PublishMessage)] # publishing PublishMessage will route to both queues.


############################
# Processor Configurations #
############################

# Configure a message processor to handle the consumed messages
class MessageProcessor(MessageProcessorBase):
    def process_message(self, message: ConsumeMessage):
        print(message)
        outbound_message = PublishMessage(
            body=ProducerMessageBody(
                key=message.body.objectName,
                code="newBucket",
                conversationId=message.body.conversationId,
            )
        )  # crosswalk the values from the consumed message to the produced message
        self.producer.publish(outbound_message)
        print(outbound_message)


# Actually Connect and run the consumer
def main():
    """Starts a listener which will consume messages from the inbound queue and publish messages to the outbound queues."""
    with DurableProducer(
        queue_bindings=bindings,
        publish_exchange=publish_exchange,
        connection_parameters=ProducerConnectionParameterFactory(),
        connection_retryer=ConnectionRetryerFactory(),
    ) as producer:
        with DurableConsumer(
            consume_queue=inbound_queue,
            connection_parameters=ConsumerConnectionParameterFactory(),
            connection_retryer=ConnectionRetryerFactory(),
        ) as consumer:
            message_processor = MessageProcessor(message_cls=ConsumeMessage, producer=producer)
            consumer.listen(message_processor)


if __name__ == "__main__":
    # First message to consume
    class InitialMessage(PublishMessageBase):
        message_body_cls: Type[
            ConsumeMessageBody] = ConsumeMessageBody
        default_routing_key: str = "inbound.message.m"

    initial_message_bindings = [Binding(queue=inbound_queue, message=InitialMessage)]

    with DurableProducer(
            queue_bindings=initial_message_bindings,
            publish_exchange=publish_exchange,
            connection_parameters=ProducerConnectionParameterFactory(),
            connection_retryer=ConnectionRetryerFactory(),
    ) as producer:
        producer.publish(InitialMessage(body={"objectName": "object", "bucket": "bucket"}))
    # Consume the message and process it
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

talus-1.3.0rc1.tar.gz (22.2 kB view details)

Uploaded Source

Built Distribution

talus-1.3.0rc1-py3-none-any.whl (25.7 kB view details)

Uploaded Python 3

File details

Details for the file talus-1.3.0rc1.tar.gz.

File metadata

  • Download URL: talus-1.3.0rc1.tar.gz
  • Upload date:
  • Size: 22.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.10

File hashes

Hashes for talus-1.3.0rc1.tar.gz
Algorithm Hash digest
SHA256 213e476e139709c78efdf9cfd6bdb5826df10ad538be25eeedd72b8c829fad63
MD5 76b667c76093a352858bcb1829004cb1
BLAKE2b-256 e920951ef1968f26477ab0fd7c2cabd553b629bdc7eb4fb9b6b105d0daa20160

See more details on using hashes here.

Provenance

File details

Details for the file talus-1.3.0rc1-py3-none-any.whl.

File metadata

  • Download URL: talus-1.3.0rc1-py3-none-any.whl
  • Upload date:
  • Size: 25.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.10

File hashes

Hashes for talus-1.3.0rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 65cf34b90268f89a17b9c4f306daa8790aadab25de29711c498eec2974dfbeb9
MD5 62fc80d61a5db7628534af4c2a8d214a
BLAKE2b-256 19ee2d26d5a5a5ce40fc909a28e8787d7c6f8633a8a128e180e923e7981dd5be

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page