Skip to main content

A quantitative web application profiler

Project description

https://travis-ci.org/mhallin/tamarack.svg?branch=develop

Tamarack is a quantitative web application profiler. It will track the performance of all requests made to your app, aggregate them, and present them so you can identify bottlenecks and track improvements and regressions.

Tamarack consists of three parts: a collector library which resides in your application. The collector will feed the receiver server data, which is then presented in the explorer. The data is stored in PostgreSQL and can be scaled up depending on the needs of your application. The collector is designed to cause minimal overhead in your application.

docs/img/sample_app.png

The data is available in near real time, with only a few minutes of delay to give all servers time to gather the statistics.

There is currently only an implementation of the Tamarack Collector in Python primarily for Django, with Flask support coming soon. The receiver API is a simple HTTP API, so writing bindings for your language should not be hard.

Setting It Up

Your system will need some basic packages before getting Tamarack up and running:

  • Python 3.4, with development libraries (python3.4, python3.4-dev)

  • Python package installer (python3-pip)

  • PostgreSQL 9.3 or later, with extension modules (postgresql-9.3, postgresql-contrib-9.3)

Once those packages have been installed, you can begin setting up Tamarack. The first thing you will need is a virtual environment where all Python packages will be installed. With Python 3.4 this should be easy easy, since Virtualenv now is bundled with the Python installation. However, this clashes with some Linux distributions’ package management and might require some manual setup:

## Skip this if you have pyvenv-3.4 available:

# Install virtualenv globally
pip3 install virtualenv

# Create a Tamarack environment in /var/lib
virtualenv -p `which python3.4` /var/lib/tamarack

If you have pyvenv-3.4 available, you can simply use it instead:

## Skip this if you installed virtualenv above:

# Create a Tamarack environment in /var/lib
pyvenv-3.4 /var/lib/tamarack

Common for both setups is how you use them to install Tamarack:

# Step into this virtual environment
source /var/lib/tamarack/bin/activate

# Install Tamarack
pip install tamarack

# Create a configuration file
tamarack init /etc/tamarack.py

This will generate a configuration file at /etc/tamarack.py, which you will need to edit with the settings for your system. When you’re done, you’re ready to start Tamarack:

tamarack --config=/etc/tamarack.py server

This will start an HTTP server on port 3000, which you can visit in a web browser.

Where to Go From Here?

If you followed the instructions above and visited the page, you probably noticed that the list of applications is empty. Now you will need to integrate the Tamarack Collector in your application in order to start receiving profiling data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tamarack-0.0.3.tar.gz (755.2 kB view details)

Uploaded Source

File details

Details for the file tamarack-0.0.3.tar.gz.

File metadata

  • Download URL: tamarack-0.0.3.tar.gz
  • Upload date:
  • Size: 755.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tamarack-0.0.3.tar.gz
Algorithm Hash digest
SHA256 5384f3d4977f02f40512dc622e6ffd94c0fd6ce09cf8194ca377cea58b5c701e
MD5 52e958f80fea60cfe83ed32c357dca7c
BLAKE2b-256 9c49d73e2d97df100d15e4df9db2d17abf694547a6ec506a830ba61285059747

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page