NWB conversion scripts and tutorials.
Project description
tank-lab-to-nwb
NWB conversion scripts and tutorials. A collaboration with the Tank lab, funded by the Simons Foundation.
Install
$ pip install tank-lab-to-nwb
Usage
There are two ways to go about converting Neuropixel and Virmen behavior data.
(1) The primary processing pipeline synchronizes the task data with the electrophysiology data through TTL pulse and writes the spiking output to the same NWB file.
The required arguments for the use of the relevant functions are denoted in the comments of their respective sections of the conversion script. These include the file or folder locations of the data to be converted to NWB format, as well as several optional fields such as Subject information (species/age/weight).
After editing the conversion script convert_towers_processed.py
with the proper path for Neuropixel and behavior data,
the conversion can be executed from the terminal:
$ cd tank-lab-to-nwb
$ python tank_lab_to_nwb/convert_towers_task/convert_towers_processed.py
Alternatively, the conversion can be done using a custom tailored jupyter notebook spikeinterface_pipeline.ipynb
that can be launched from the terminal:
$ jupyter notebook notebooks/spikeinterface_pipeline.ipynb
(2) The secondary processing pipeline does not synchronize with TTL nor writes the spiking output to the NWB file.
$ cd tank-lab-to-nwb
$ python tank_lab_to_nwb/convert_towers_task/convert_towers_raw.py
The NWBFile can be inspected by reading it from a python script:
from pynwb import NWBHDF5IO
file_path = 'TowersTask_stub.nwb'
io = NWBHDF5IO(file_path, 'r')
nwb = io.read()
print(nwb)
Alternatively, the NWB data can be visualized with nwb-jupyter-widgets
in a jupyter notebook:
$ jupyter notebook notebooks/towers_task_custom_widget.ipynb
from pynwb import NWBHDF5IO
from nwbwidgets import nwb2widget
from tank_lab_to_nwb.nwbwidgets import custom_timeseries_widget_for_behavior
from nwbwidgets.view import default_neurodata_vis_spec
import pynwb
file_path = 'TowersTask_stub.nwb'
io = NWBHDF5IO(file_path, 'r')
nwb = io.read()
default_neurodata_vis_spec[pynwb.TimeSeries] = custom_timeseries_widget_for_behavior
nwb2widget(nwb)
Background
Behavioral data mapping
The behavioral data is contained in .mat
files similar to the form:
PoissonBlocksReboot4_cohort4_Bezos3_E65_T_20180202.mat
This matlab file contains a struct (log
) which contains several fields relevant for conversion.
The list of fields that are extracted from this struct can be found below.
NWBFile
Location in Virmen (.mat) file | Location in NWB file | Description |
---|---|---|
log.session.start |
nwb.session_start_time |
datetime when session started |
[not in file] | nwb.session_description |
additional information about session (optional) |
[name of file] | nwb.session_id |
unique identifier of the session |
Subject
Location in Virmen (.mat) file | Location in NWB file | Description |
---|---|---|
log.session.start |
nwb.subject.age |
age (days) in isoformat (optional) |
[not in file] | nwb.species |
information about the species (optional) |
log.animal.name |
nwb.subject_id |
identifier of the subject |
[not in file] | nwb.genotype |
information about the genotype (optional) |
[not in file] | nwb.sex |
information about the sex of the subject (optional) |
LabMetaData
The lap specific metadata is populated in tank_lab_to_nwb/convert_towers_task/virmenbehaviordatainterface.py
using the custom extension ndx-tank-metadata
built for extending the NWB LabMetaData schema with the required fields:
Location in Virmen (.mat) file | Location in NWB file | Description |
---|---|---|
log.version.code |
nwb.lab_meta_data['LabMetaData'].experiment_name |
name of experiment run |
log.version.name |
nwb.lab_meta_data['LabMetaData'].world_file_name |
name of world run |
log.animal.protocol |
nwb.lab_meta_data['LabMetaData'].protocol_name |
name of protocol run |
log.animal.stimulusBank |
nwb.lab_meta_data['LabMetaData'].stimulus_bank_path |
path of stimulus bank file |
log.version.repository |
nwb.lab_meta_data['LabMetaData'].commit_id |
commit id for session run |
log.session.end |
nwb.lab_meta_data['LabMetaData'].session_end_time |
datetime when session ended |
log.version.rig.rig |
nwb.lab_meta_data['LabMetaData'].location |
name of rig where session was run |
[not in file] | nwb.lab_meta_data['LabMetaData'].num_trials |
number of trials in the session |
[not in file] | nwb.lab_meta_data['LabMetaData'].session_performance |
performance of correct responses in % (optional)* |
log.version.rig |
nwb.lab_meta_data['LabMetaData'].rig.fields |
rig information |
log.version.mazes |
nwb.lab_meta_data['LabMetaData'].mazes.to_dataframe() |
maze information |
- session_performance can be edited from
virmenbehaviordatainterface.py
.
Rig
Rig information is converted from a log.version.rig
struct object to a dictionary like as in this example:
{'rig': 'NPX',
'simulationMode': 1,
'hasDAQ': 1,
'hasSyncComm': 0,
'minIterationDT': 0.01,
'arduinoPort': 'COM18',
'sensorDotsPerRev': array([2469.2, 2469.2, 2469.2, 2469.2]),
'ballCircumference': 63.8,
'toroidXFormP1': 0.3879,
'toroidXFormP2': 0.392,
'colorAdjustment': array([0. , 0.4, 0.5]),
'soundAdjustment': 0.2,
'nidaqDevice': 1,
'nidaqPort': 1,
'nidaqLines': array([ 0, 11], dtype=int32),
'syncClockChannel': 5,
'syncDataChannel': 6,
'rewardChannel': 0,
'rewardSize': 0.004,
'rewardDuration': 0.05,
'laserChannel': 1,
'rightPuffChannel': 2,
'leftPuffChannel': 3}
Mazes
Maze information is converted to a DynamicTable
object that can be converted to a pandas dataframe by calling .to_dataframe()
as in this example:
id | world | lStart | lCue | lMemory | cueDuration | cueVisibleAt | cueProbability | ... | blockPerform |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 45 | 10 | nan | inf | inf | ... | 0.7 |
1 | 1 | 30 | 120 | 20 | nan | inf | inf | ... | 0.7 |
2 | 1 | 30 | 220 | 20 | nan | inf | inf | ... | 0.7 |
3 | 1 | 30 | 300 | 20 | nan | inf | inf | ... | 0.7 |
4 | 1 | 30 | 380 | 20 | nan | inf | inf | ... | 0.7 |
Epochs
Location in Virmen (.mat) file | Location in NWB file | Description |
---|---|---|
index of log.block structure |
nwb.intervals['epochs'].id |
number of epoch in session |
log.block.mazeID |
nwb.intervals['epochs'].maze_id |
number of maze in epoch |
log.block.mainMazeID |
nwb.intervals['epochs'].main_maze_id |
number of maze of "highest" level for subject |
log.block.easyBlockFlag |
nwb.intervals['epochs'].easy_epoch |
1 if block was flagged as easy (maze_id < main_maze_id) |
log.block.firstTrial |
nwb.intervals['epochs'].first_trial |
first trial run in an epoch |
[not in file] | nwb.intervals['epochs'].num_trials |
number of trials for each epoch |
log.block.start |
nwb.intervals['epochs'].start_time |
datetime when epoch started with respect to the start time of the session |
log.block.duration |
nwb.intervals['epochs'].duration |
epoch duration in seconds |
log.block.rewardMiL |
nwb.intervals['epochs'].reward_ml |
ml of reward in an epoch |
Trials
Location in Virmen (.mat) file | Location in NWB file | Description |
---|---|---|
[not in file] | nwb.intervals['trials'].id |
unique identifier of trial for all epochs |
index of log.block.trial |
nwb.intervals['trials'].trial_id |
identifier of trial within an epoch |
log.block.trial.trialType |
nwb.intervals['trials'].trial_type |
type of trial (L=Left, R=Right) |
log.block.trial.choice |
nwb.intervals['trials'].choice |
(L=Left, R=Right, nil=Trial violation) |
log.block.trial.start |
nwb.intervals['trials'].start_time |
start time of trial with respect to the start time of the epoch |
log.block.trial.duration |
nwb.intervals['trials'].duration |
duration of trial in seconds |
log.block.trial.iterations |
nwb.intervals['trials'].iterations |
number of frames in a trial |
log.block.trial.iCueEntry |
nwb.intervals['trials'].iCueEntry |
iteration # when subject entered cue region |
log.block.trial.iMemEntry |
nwb.intervals['trials'].iMemEntry |
iteration # when subject entered memory region |
log.block.trial.iTurnEntry |
nwb.intervals['trials'].iTurnEntry |
iteration # when subject entered turn region |
log.block.trial.iArmEntry |
nwb.intervals['trials'].iArmEntry |
iteration # when subject entered arm region |
log.block.trial.iBlank |
nwb.intervals['trials'].iBlank |
iteration # when screen if turned off |
log.block.trial.cueCombo |
nwb.intervals['trials'].left_cue_presence, nwb.intervals['trials'].right_cue_presence |
indicates if nth cue appeared on left or right |
log.block.trial.cuePosition |
nwb.intervals['trials'].left_cue_position, nwb.intervals['trials'].right_cue_position |
position in maze for each cue |
log.block.trial.cueOnset |
nwb.intervals['trials'].left_cue_onset, nwb.intervals['trials'].right_cue_onset |
iteration number when cues appeared in trial |
log.block.trial.cueOffset |
nwb.intervals['trials'].left_cue_offset, nwb.intervals['trials'].right_cue_offset |
iteration number when cues disappeared in trial |
log.block.trial.excessTravel |
nwb.intervals['trials'].excessTravel |
parameter that measures extra distance run by subject |
log.block.trial.rewardScale |
nwb.intervals['trials'].rewardScale |
Multiplier of reward for each correct trial |
Behavior
Position, ViewAngle, Velocity, Collision
Location in Virmen (.mat) file | Location in NWB file | Description |
---|---|---|
log.block.trial.time |
nwb.processing['behavior'].data_interfaces['Time'] |
time vector for each frame measured by Virmen |
log.block.trial.position |
nwb.processing['behavior'].data_interfaces['Position'].spatial_series |
position matrix for each frame (X(cm), Y(cm)) |
log.block.trial.position |
nwb.processing['behavior'].data_interfaces['ViewAngle'].spatial_series |
viewAngle for each frame (degrees) |
log.block.trial.velocity |
nwb.processing['behavior'].data_interfaces['Velocity'] |
velocity matrix for each frame (X(cm/s), Y(cm/s)) |
log.block.trial.collision |
nwb.processing['behavior'].data_interfaces['Collision'] |
for each frame 1= collision detected |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tank_lab_to_nwb-0.1.0.tar.gz
.
File metadata
- Download URL: tank_lab_to_nwb-0.1.0.tar.gz
- Upload date:
- Size: 16.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b85c619dd86b52997fcff34484454144fbc048c81c193a6287742217d3133762 |
|
MD5 | 54fb93dca9af1620bec9471ee439a23b |
|
BLAKE2b-256 | 5e2f411ea7ff6a93ddf411e0a8b47ab614227c0feb36bd03e0c0b821fceac612 |
File details
Details for the file tank_lab_to_nwb-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: tank_lab_to_nwb-0.1.0-py3-none-any.whl
- Upload date:
- Size: 17.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb3ce67648fa336a20174156095fde80d8c065be3d08564bedc8832362a29cfe |
|
MD5 | f485f2b3a71844423aebba80bd3b3d62 |
|
BLAKE2b-256 | 29bfaec2d2da0df27b30f5343a30c9493c7e2e930fc442bf6e825c4f852f2f91 |