T-Digest data structure
Project description
# tdigest
### Efficient percentile estimation of streaming or distributed data
[![Latest Version](https://pypip.in/v/tdigest/badge.png)](https://pypi-hypernode.com/pypi/tdigest/)
[![Build Status](https://travis-ci.org/CamDavidsonPilon/tdigest.svg?branch=master)](https://travis-ci.org/CamDavidsonPilon/tdigest)
This is a Python implementation of Ted Dunning's [t-digest](https://github.com/tdunning/t-digest) data structure. The t-digest data structure is designed around computing accurate estimates from either streaming data, or distributed data. These estimates are percentiles, quantiles, trimmed means, etc. Two t-digests can be added, making the data structure ideal for map-reduce settings, and can be serialized into much less than 10kB (instead of storing the entire list of data).
See a blog post about it here: [Percentile and Quantile Estimation of Big Data: The t-Digest](http://dataorigami.net/blogs/napkin-folding/19055451-percentile-and-quantile-estimation-of-big-data-the-t-digest)
### Installation
*tdigest* is compatible with both Python 2 and Python 3.
```
pip install tdigest
```
### Usage
#### Update the digest sequentially
```
from tdigest import TDigest
from numpy.random import random
digest = TDigest()
for x in range(5000):
digest.update(random())
print(digest.percentile(15)) # about 0.15, as 0.15 is the 15th percentile of the Uniform(0,1) distribution
```
#### Update the digest in batches
```
another_digest = TDigest()
another_digest.batch_update(random(5000))
print(another_digest.percentile(15))
```
#### Sum two digests to create a new digest
```
sum_digest = digest + another_digest
sum_digest.percentile(30) # about 0.3
```
### API
`TDigest.`
- `update(x, w=1)`: update the tdigest with value `x` and weight `w`.
- `batch_update(x, w=1)`: update the tdigest with values in array `x` and weight `w`.
- `compress()`: perform a compression on the underlying data structure that will shrink the memory footprint of it, without hurting accuracy. Good to perform after adding many values.
- `percentile(p)`: return the `p`th percentile. Example: `p=50` is the median.
- `quantile(q)`: return the CDF the value `q` is at.
- `trimmed_mean(p1, p2)`: return the mean of data set without the values below and above the `p1` and `p2` percentile respectively.
### Efficient percentile estimation of streaming or distributed data
[![Latest Version](https://pypip.in/v/tdigest/badge.png)](https://pypi-hypernode.com/pypi/tdigest/)
[![Build Status](https://travis-ci.org/CamDavidsonPilon/tdigest.svg?branch=master)](https://travis-ci.org/CamDavidsonPilon/tdigest)
This is a Python implementation of Ted Dunning's [t-digest](https://github.com/tdunning/t-digest) data structure. The t-digest data structure is designed around computing accurate estimates from either streaming data, or distributed data. These estimates are percentiles, quantiles, trimmed means, etc. Two t-digests can be added, making the data structure ideal for map-reduce settings, and can be serialized into much less than 10kB (instead of storing the entire list of data).
See a blog post about it here: [Percentile and Quantile Estimation of Big Data: The t-Digest](http://dataorigami.net/blogs/napkin-folding/19055451-percentile-and-quantile-estimation-of-big-data-the-t-digest)
### Installation
*tdigest* is compatible with both Python 2 and Python 3.
```
pip install tdigest
```
### Usage
#### Update the digest sequentially
```
from tdigest import TDigest
from numpy.random import random
digest = TDigest()
for x in range(5000):
digest.update(random())
print(digest.percentile(15)) # about 0.15, as 0.15 is the 15th percentile of the Uniform(0,1) distribution
```
#### Update the digest in batches
```
another_digest = TDigest()
another_digest.batch_update(random(5000))
print(another_digest.percentile(15))
```
#### Sum two digests to create a new digest
```
sum_digest = digest + another_digest
sum_digest.percentile(30) # about 0.3
```
### API
`TDigest.`
- `update(x, w=1)`: update the tdigest with value `x` and weight `w`.
- `batch_update(x, w=1)`: update the tdigest with values in array `x` and weight `w`.
- `compress()`: perform a compression on the underlying data structure that will shrink the memory footprint of it, without hurting accuracy. Good to perform after adding many values.
- `percentile(p)`: return the `p`th percentile. Example: `p=50` is the median.
- `quantile(q)`: return the CDF the value `q` is at.
- `trimmed_mean(p1, p2)`: return the mean of data set without the values below and above the `p1` and `p2` percentile respectively.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tdigest-0.4.0.1.tar.gz
(4.9 kB
view details)
File details
Details for the file tdigest-0.4.0.1.tar.gz
.
File metadata
- Download URL: tdigest-0.4.0.1.tar.gz
- Upload date:
- Size: 4.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8c29fb7c98f07f52b420a0bd92dadc582b9731b75b4e02aa53ef0900fd24699 |
|
MD5 | df54f358a007c9659d9291766da5ad7b |
|
BLAKE2b-256 | 21c976a30b19aecddadf5f1929c435e89fc5848307103a491bb3f459e8619fb7 |